# EPISTEMIC PLANNING: RECENT ADVANCEMENTS AND FUTURE DIRECTIONS

Alessandro Burigana

Free University of Bozen-Bolzano

November 11th, 2025

The 35th International Conference on Automated Planning and Scheduling,

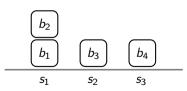
Melbourne, Victoria, Australia

# **Classical Planning**

#### **Example (Blocks World)**

- An initial configuration of blocks are piled up in stacks is given;
- The agent can move one block (at a time) from the top of a stack to another;
- From an initial configuration, the agent must move the blocks to achieve a desired one.

#### Initial state:



Actions move(b, x, y):

- $\qquad \mathsf{Pre}( {\color{red} \textit{move}}(b,x,y)) = \textit{On}(b,x) \land \textit{Clear}(b) \land \textit{Clear}(y)$
- Eff(move(b, x, y)) = {On(b, y), Clear(x),  $\neg On(b, x)$ ,  $\neg Clear(y)$ }  $\triangleright \top$

# **Epistemic Planning**

**Epistemic planning**: enrichment of classical planning with notions of knowledge and belief.

- → Epistemic states represent what the agents know/believe about the world and others' perspective of the world.
- → **Epistemic actions** can change both the world and the knowledge/belief of the agents.
- → Agents have to reason about each others' (higher-order) knowledge/beliefs to reach a shared goal.
- ightarrow We move from a propositional, single-agent, fully observable, deterministic setting to an modal, multi-agent, partially observable, non-deterministic one.

# Semantics for Epistemic Planning

We can define two main families of semantics for epistemic planning:

- Sentential approaches:
  - Epistemic states: sets of formulas called knowledge (or belief) bases.
  - **Epistemic actions**: typically allow to modify a state by adding/deleting epistemic formulas (akin to classical actions).

#### 2 Dynamic Epistemic Logic:

- **Epistemic states**: pointed Kripke models, where a set of possible worlds represents different perspectives of agents about a situation.
- **Epistemic actions**: pointed event models, where a set of possible events represents different agents' view of some information change.



# **Syntax**

Let P be a finite set of propositional atoms and  $Ag = \{1, ..., n\}$  a finite set of agents. The language  $\mathcal{L}_{P,Ag}$  of Epistemic Logic is given by the BNF:

## **Definition (Language of Epistemic Logic)**

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \square_i \phi,$$

- $\rightarrow$  Operator  $\square_i$ : depending on the context, describes what agent *i* knows or believes.
- → Dual operator  $\Diamond_i$  ( $\equiv \neg \Box_i \neg$ ): describes what agent i considers to be possible or compatible.

#### **Semantics**

An epistemic state represents both factual information and what agents know/believe.

## **Definition (Epistemic Model)**

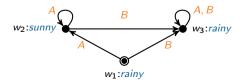
An epistemic model is a triple M = (W, R, L), where:

- $W \neq \emptyset$  is a finite set of **possible worlds**;
- $R: Ag \rightarrow 2^{W \times W}$  assigns to each agent i an accessibility relation  $R_i$ ; and
- $L: W \to 2^P$  assigns to each world a **label**, being a finite set of atoms.

#### **Definition (Epistemic State)**

An epistemic state is a pair  $(M, w_d)$ , where  $w_d \in W$  is the designated world.

#### **Example**

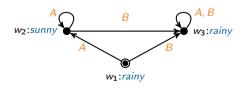


## **Semantics**

## **Definition (Truth)**

Let 
$$s = (M, w_d)$$
, where  $M = (W, R, L)$ , be an **epistemic state** and let  $w \in W$ : 
$$(M, w) \models p \qquad \text{iff} \qquad p \in L(w) \\ (M, w) \models \neg \varphi \qquad \text{iff} \qquad (M, w) \not\models \varphi \\ (M, w) \models \varphi \land \psi \qquad \text{iff} \qquad (M, w) \models \varphi \text{ and } (M, w) \models \psi \\ (M, w) \models \Box_i \varphi \qquad \text{iff} \qquad \forall v \text{ if } w R_i v \text{ then } (M, v) \models \varphi$$

#### Example



- □<sub>Anne</sub> sunny
- $\blacksquare$   $\square_{Bob}$  rainy
- $\square_{Anne}\square_{Bob}$ rainy
- lacktriangleright  $\Diamond_{Bob}\Box_{Anne}$  rainy

## To Know or to Believe?

How can epistemic states represent the knowledge and the beliefs of agents?

 $\rightarrow$  We model them via axioms.

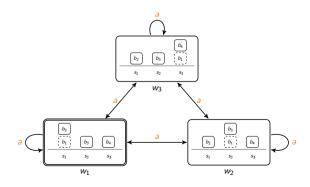
|   | Axiom                                                                  | Frame Property | Knowledge | Belief   |
|---|------------------------------------------------------------------------|----------------|-----------|----------|
| K | $\square_{i}(\phi \to \psi) \to (\square_{i}\phi \to \square_{i}\psi)$ | -              | ✓         | ✓        |
| Т | $\Box_i \Phi \to \Phi$                                                 | Reflexivity    | ✓         |          |
| D | $\Box_i \Phi \rightarrow \Diamond_i \Phi$                              | Seriality      | ✓         | <b>√</b> |
| 4 | $\Box_i \Phi \rightarrow \Box_i \Box_i \Phi$                           | Transitivity   | ✓         | ✓        |
| 5 | $\neg \Box_i \Phi \rightarrow \Box_i \neg \Box_i \Phi$                 | Euclideanness  | ✓         | ✓        |

#### An epistemic state represents:

- Knowledge, when it satisfies axioms K, T, 4 and  $5 \Rightarrow \text{Logic S5}_n$
- Belief, when it satisfies axioms K, D, 4 and 5  $\Rightarrow$  Logic KD45<sub>n</sub>

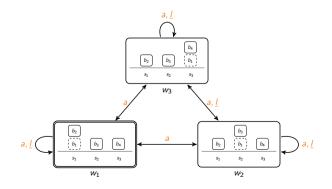
## **Example (Epistemic Blocks World)**

■ Agent a: only sees from above.



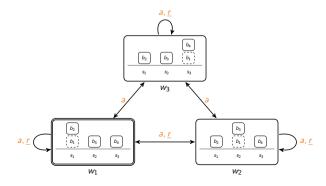
## **Example (Multi-Agent Epistemic Blocks World)**

- Agent a: only sees from above.
- Agent /: only sees from a top left position.



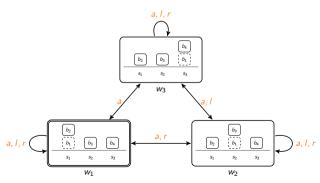
## **Example (Multi-Agent Epistemic Blocks World)**

- Agent a: only sees from above.
- Agent *r*: only sees from a top right position.



## **Example (Multi-Agent Epistemic Blocks World)**

- Agent a: only sees from above.
- Agent /: only sees from a top left position.
- Agent *r*: only sees from a top right position.





## **Epistemic Actions**

#### **Definition (Event Model)**

An **event model** is a quadruple A = (E, Q, pre, post), where:

- $E \neq \emptyset$  is a finite set of **events**;
- $Q: Ag \rightarrow 2^{E \times E}$  assigns to each agent i an accessibility relation  $Q_i$ ;

#### Intuitively:

- An event can be seen as a classical action.
- Accessibility relations specify the perspectives of agents on which events take place.

## **Epistemic Actions**

#### **Definition (Event Model)**

An **event model** is a quadruple A = (E, Q, pre, post), where:

- $E \neq \emptyset$  is a finite set of **events**;
- $Q: Ag \rightarrow 2^{E \times E}$  assigns to each agent i an accessibility relation  $Q_i$ ;
- $pre : E \rightarrow \mathcal{L}_{P,Ag}$  assigns to each event a **precondition**;
- post :  $E \times P \to \mathcal{L}_{P,Ag}$  assigns to each event-atom pair a postcondition.

#### Intuitively:

- An event can be seen as a classical action, each with its own pre- and postconditions.
- Accessibility relations specify the perspectives of agents on which events take place.

## **Epistemic Actions**

#### **Definition (Event Model)**

An **event model** is a quadruple A = (E, Q, pre, post), where:

- $E \neq \emptyset$  is a finite set of **events**;
- $Q: Ag \rightarrow 2^{E \times E}$  assigns to each agent i an accessibility relation  $Q_i$ ;
- $pre : E \rightarrow \mathcal{L}_{P,Ag}$  assigns to each event a **precondition**;
- post :  $E \times P \to \mathcal{L}_{P,Ag}$  assigns to each event-atom pair a postcondition.

#### Intuitively:

- An event can be seen as a classical action, each with its own pre- and postconditions.
- Accessibility relations specify the perspectives of agents on which events take place.

## **Definition** (Epistemic Action)

An epistemic action is a pair  $(A, e_d)$ , where  $e_d \in E$  is the designated event.

An action  $(A, e_d)$  is **applicable** is an epistemic state  $(M, w_d)$  iff  $(M, w_d) \models pre(e_d)$ .

#### **Definition (Product Update)**

An action  $(A, e_d)$  is applicable is an epistemic state  $(M, w_d)$  iff  $(M, w_d) \models pre(e_d)$ .

#### **Definition (Product Update)**

Given  $(M, w_d)$  and  $(A, e_d)$ , where M = (W, R, L) and A = (E, Q, pre, post), their **product update**  $(M, w_d) \otimes (A, e_d)$  is the **epistemic state**  $((W', R', L'), w'_d)$  where:

 $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$ 

An action  $(A, e_d)$  is applicable is an epistemic state  $(M, w_d)$  iff  $(M, w_d) \models pre(e_d)$ .

#### **Definition (Product Update)**

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};$

An action  $(A, e_d)$  is applicable is an epistemic state  $(M, w_d)$  iff  $(M, w_d) \models pre(e_d)$ .

#### **Definition (Product Update)**

- $W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and

An action  $(A, e_d)$  is applicable is an epistemic state  $(M, w_d)$  iff  $(M, w_d) \models pre(e_d)$ .

#### **Definition (Product Update)**

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $\mathbf{w}_d' = (w_d, e_d).$

#### **Example**

## **Public Announcement**

Agent r publicly tells everybody that  $\neg On(b_1, s_3)$ .



#### **Example**

#### **Public Announcement**

Agent r publicly tells everybody that  $\neg On(b_1, s_3)$ .



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R_i' = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\}; \text{ and }$
- $w'_d = (w_d, e_d).$



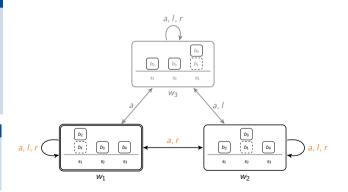
#### **Example**

#### **Public Announcement**

Agent r publicly tells everybody that  $\neg On(b_1, s_3)$ .



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R_i' = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\}; \text{ and }$
- $w'_d = (w_d, e_d).$



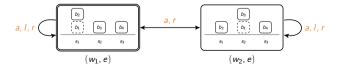
#### **Example**

#### Public Announcement

Agent r publicly tells everybody that  $\neg On(b_1, s_3)$ .



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\}; \text{ and }$
- $w'_d = (w_d, e_d).$

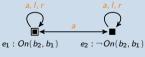


#### **Example**

#### **Semi-Private Sensing Action**

Agent r peeks under block  $b_2$  while agents a and l observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.



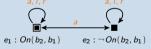
Trivial postconditions are omitted.

#### Example

#### **Semi-Private Sensing Action**

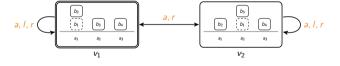
Agent r peeks under block  $b_2$  while agents a and l observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.



Trivial postconditions are omitted.

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $w'_d = (w_d, e_d).$



#### Example

#### **Semi-Private Sensing Action**

Agent r peeks under block  $b_2$  while agents a and b observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.



Trivial postconditions are omitted.

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R_i' = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare$   $L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\};$  and
- $\mathbf{w}'_d = (w_d, e_d).$





#### Example

#### **Semi-Private Sensing Action**

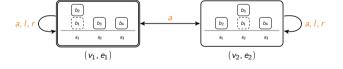
Agent r peeks under block  $b_2$  while agents a and b observe him. Specifically:

- Agents r and l observe what is actually being sensed.
- Agent a can not directly observe what agent r is seeing.



Trivial postconditions are omitted.

- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $\mathbf{w}'_d = (w_d, e_d).$



#### **Example**

#### **Private Ontic Action**

Agent I privately moves block  $b_2$  from  $b_1$  to  $b_3$ , where:

- $\blacksquare$  pre = On(b<sub>2</sub>, b<sub>1</sub>)  $\land$  Clear(b<sub>2</sub>)  $\land$  Clear(b<sub>3</sub>)
- $\blacksquare$   $post(e_1, On(b_2, b_1)) = \bot$
- **■**  $post(e_1, On(b_2, b_3)) = \top$

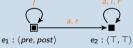


#### **Example**

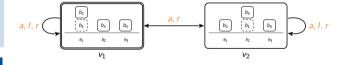
#### **Private Ontic Action**

Agent I privately moves block  $b_2$  from  $b_1$  to  $b_3$ , where:

- $\blacksquare$  pre = On(b<sub>2</sub>, b<sub>1</sub>)  $\land$  Clear(b<sub>2</sub>)  $\land$  Clear(b<sub>3</sub>)
- $post(e_1, On(b_2, b_1)) = \bot$
- $post(e_1, On(b_2, b_3)) = \top$



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\}; \text{ and }$
- $\quad \blacksquare \ w_d' = (w_d, e_d).$



#### **Example**

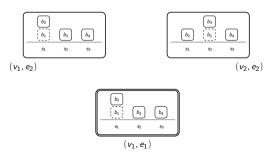
#### **Private Ontic Action**

Agent | privately moves block  $b_2$  from  $b_1$  to  $b_3$ , where:

- $pre = On(b_2, b_1) \land Clear(b_2) \land Clear(b_3)$
- **■**  $post(e_1, On(b_2, b_1)) = \bot$
- $\blacksquare$   $post(e_1, On(b_2, b_3)) = \top$



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\}; \text{ and }$
- $\quad \blacksquare \ w_d' = (w_d, e_d).$



#### **Example**

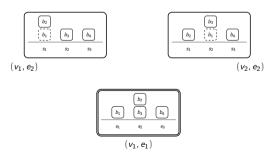
#### **Private Ontic Action**

Agent I privately moves block  $b_2$  from  $b_1$  to  $b_3$ , where:

- $\blacksquare$  pre = On(b<sub>2</sub>, b<sub>1</sub>)  $\wedge$  Clear(b<sub>2</sub>)  $\wedge$  Clear(b<sub>3</sub>)
- **■**  $post(e_1, On(b_2, b_1)) = \bot$
- $\blacksquare$   $post(e_1, On(b_2, b_3)) = \top$



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $R'_{i} = \{((w, e), (v, f)) \in W' \times W' \mid wR_{i}v \text{ and } eQ_{i}f\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $\quad \blacksquare \ w_d' = (w_d, e_d).$



#### **Example**

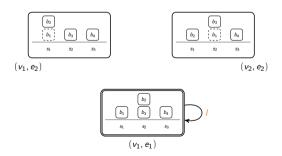
#### **Private Ontic Action**

Agent | privately moves block  $b_2$  from  $b_1$  to  $b_3$ , where:

- $pre = On(b_2, b_1) \wedge Clear(b_2) \wedge Clear(b_3)$
- $post(e_1, On(b_2, b_1)) = \bot$
- $\blacksquare$   $post(e_1, On(b_2, b_3)) = \top$



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $\quad \blacksquare \ w_d' = (w_d, e_d).$



#### **Example**

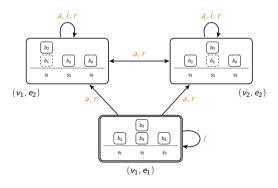
#### **Private Ontic Action**

Agent I privately moves block  $b_2$  from  $b_1$  to  $b_3$ , where:

- $\blacksquare$  pre = On(b<sub>2</sub>, b<sub>1</sub>)  $\land$  Clear(b<sub>2</sub>)  $\land$  Clear(b<sub>3</sub>)
- **■**  $post(e_1, On(b_2, b_1)) = \bot$
- $post(e_1, On(b_2, b_3)) = \top$



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_i v \text{ and } eQ_i f\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $\quad \blacksquare \ w_d' = (w_d, e_d).$



## **Example**

### **Public Non-Deterministic Ontic Action**

Agents publicly flip a coin: if heads, they move  $b_2$  from  $b_1$  to  $b_3$ , otherwise to  $b_4$ , where:

- $\blacksquare$   $pre_k = On(b_2, b_1) \land Clear(b_2) \land Clear(b_k)$
- $post_k(e_1, On(b_2, b_1)) = \bot$
- $\blacksquare$  post<sub>k</sub>  $(e_1, On(b_2, b_k)) = \top$



## **Example**

#### Public Non-Deterministic Ontic Action

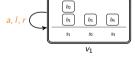
Agents publicly flip a coin: if heads, they move  $b_2$  from  $b_1$  to  $b_3$ , otherwise to  $b_4$ , where:

$$lacktriangledown pre_k = On(b_2, b_1) \wedge Clear(b_2) \wedge Clear(b_k)$$

$$lacksquare$$
  $post_k(e_1, On(b_2, b_1)) = \bot$ 

$$\blacksquare$$
  $post_k(e_1, On(b_2, b_k)) = \top$ 





- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\};$  and
- $\mathbf{w}'_d = (w_d, e_d).$

## **Example**

#### **Public Non-Deterministic Ontic Action**

Agents publicly flip a coin: if heads, they move  $b_2$  from  $b_1$  to  $b_3$ , otherwise to  $b_4$ , where:

- $\blacksquare$   $pre_k = On(b_2, b_1) \wedge Clear(b_2) \wedge Clear(b_k)$
- lacksquare  $post_k(e_1, On(b_2, b_1)) = \bot$
- $\blacksquare$   $post_k(e_1, On(b_2, b_k)) = \top$



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $\blacksquare R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $w'_d = (w_d, e_d).$





## **Example**

#### **Public Non-Deterministic Ontic Action**

Agents publicly flip a coin: if heads, they move  $b_2$  from  $b_1$  to  $b_3$ , otherwise to  $b_4$ , where:

$$lacktriangledown pre_k = On(b_2, b_1) \wedge Clear(b_2) \wedge Clear(b_k)$$

$$lacksquare$$
  $post_k(e_1, On(b_2, b_1)) = \bot$ 

$$\blacksquare$$
  $post_k(e_1, On(b_2, b_k)) = \top$ 



- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $R'_i = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $\blacksquare L'((w,e)) = \{p \in P \mid (M,w) \models post(e,p)\}; \text{ and }$
- $w'_d = (w_d, e_d).$





# **Example**

#### **Public Non-Deterministic Ontic Action**

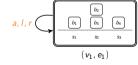
Agents publicly flip a coin: if heads, they move  $b_2$  from  $b_1$  to  $b_3$ , otherwise to  $b_4$ , where:

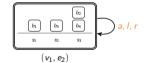
$$\blacksquare \textit{pre}_{\textit{k}} = \textit{On}(\textit{b}_{\textit{2}}, \textit{b}_{\textit{1}}) \land \textit{Clear}(\textit{b}_{\textit{2}}) \land \textit{Clear}(\textit{b}_{\textit{k}})$$

$$lacksquare$$
  $post_k(e_1, On(b_2, b_1)) = \bot$ 

$$\blacksquare$$
  $post_k(e_1, On(b_2, b_k)) = \top$ 







- $\blacksquare W' = \{(w, e) \in W \times E \mid (M, w) \models pre(e)\};$
- $R_i' = \{((w, e), (v, f)) \in W' \times W' \mid wR_iv \text{ and } eQ_if\};$
- $L'((w, e)) = \{p \in P \mid (M, w) \models post(e, p)\}$ ; and
- $w'_d = (w_d, e_d).$

| (Epistemic)   | Initial                | Set of                   | Goal    |
|---------------|------------------------|--------------------------|---------|
| Planning Task | <b>Epistemic State</b> | <b>Epistemic Actions</b> | Formula |
|               | ·····                  |                          | :       |

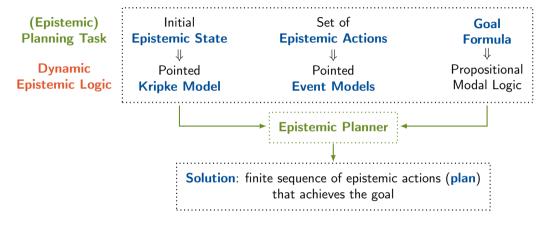
(Epistemic) Planning Task

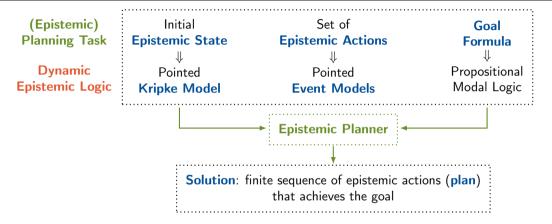
Dynamic Epistemic Logic Initial
Epistemic State

Pointed Kripke Model Set of Epistemic Actions

Pointed **Event Models** 

Goal Formula ↓ Propositional Modal Logic





# **Epistemic Plan Existence Problem**

Given an epistemic planning task, does there exist a plan that achieves the goal?

# Classical Vs. Epistemic Actions

## Classical planning:

- Propositional
- 2 Single-agent
- 3 Fully Observable
- **4** Deterministic
- **5** Ontic change

# Epistemic planning:

- 1 Modal
- 2 Multi-agent
- 3 Partially Observable
- Non-deterministic (multi-pointed models are needed)
- **5** Ontic and epistemic change

Moreover, agents can reason on higher-order knowledge/beliefs of others to any nesting level.

→ There are **no bounds** on the reasoning power of agents!

# Theorem (Bolander and Andersen [BA11])

The epistemic plan existence problem is undecidable.



# Several Different Directions

Many approaches have been pursued in epistemic planning. Today we cover the following:

- Sentential approaches:
  - Compilations to classical planning.
  - Alternating cover disjunctive formulas.
- 2 Heuristics for epistemic planning.
- 3 DEL-based approaches:
  - (Bounded) bisimulation contractions.
  - Depth-bounded epistemic planning.

# SENTENTIAL APPROACHES

# Compilations to Classical Planning

PDDL translation by Kominis and Geffner [KG15] of the next epistemic planning formalism:

- Public ontic actions: all agents know both about the action and its effects.
- Semi-private sensing/announcements actions: all agents know about the action, but only some know its effects.

## They show that:

- The compilation is quadratic.
- The identified fragment is **PSPACE-complete**.
- Their formalism corresponds to a DEL fragment.

# Compilations to Classical Planning (cont.)

PDDL translation by Muise et al. [Mui+15; Mui+22] based on a restricted language:

# **Definition (Restricted Modal Literals)**

$$\phi ::= p \mid \neg \phi \mid \square_i \phi$$

- **Epistemic states**: sets of RMLs.
- Epistemic actions: preconditions/effects pairs defined over RMLs.
- Promising results in different epistemic planning benchmarks.
- Worse performances on instances with higher reasoning depth.
- More expressive than Kominis and Geffner's approach (e.g., allows for private actions).

# Compilations to Classical Planning (cont.)

A similar approach is pursued by Cooper et al. [Coo+16], later generalized by [Coo+20]:

# Definition (Epistemic Logic of Observation (EL-O))

$$\alpha ::= p \mid S_i \alpha \mid JS \alpha$$
  
$$\phi ::= \alpha \mid \neg \phi \mid \phi \land \phi$$

where  $S_i \phi$  means that agent *i* sees whether  $\phi$  holds and  $JS \phi$  means that all agents **jointly** see whether  $\phi$ .

- $\rightarrow \phi \land S_i \phi$  is equivalent to  $\Box_i \phi$ .
- $\rightarrow \phi \land JS\phi$  is equivalent to  $C\phi$  (common knowledge of  $\phi$ ).
- They show that the problem is **PSPACE-complete**.
- More expressive than Muise et al.'s approach (allows for common knowledge and parallel actions).

# **Pros and Cons**

## Pros

- Rely on **efficiency** of classical planners.
- Lower complexity of the plan existence problem.

## Cons

- Limited to specific fragments.
- Typically do not scale well when higher-order knowledge is involved.

# Alternating Cover Disjunctive Formulas

Huang et al. [Hua+17] proposed a doxastic planning framework, *i.e.*, based on the logic of belief  $KD45_n$ :

- **Epistemic states** are general KD45<sub>n</sub> formulas with common knowledge.
- **Deterministic actions**: precondition/effects pairs over KD45 $_n$  formulas.
- **Sensing actions**: precondition + positive and negative effects over KD45 $_n$  formulas.
- Formulas are transformed into equivalent **Alternating Cover Disjunctive Formulas** (ACDF).
  - ightarrow Length of an ACDF formula is shown to be **at most singly exponential** in the length of the original formula.

# Alternating Cover Disjunctive Formulas: Pros and Cons

- A Pruning AND-OR (PrAO) search algorithm with visited state check is provided.
- The algorithm builds an action tree branching on sensing actions.
- Here a stronger notion of equivalence of ACDF formulas is introduced, which can be checked in polynomial time.
- The planner, called **MEPK**, is compared to the solvers by Kominis and Geffner, and by Muise et al.

#### Pros

- The formalism is more expressive than the compilation-based ones.
- Reasonable performances on the conducted experiments.

#### Cons

- Worse performances compared to compilation-based approaches.
- Exponential blowup of ACDF formulas size.

# HEURISTICS FOR EPISTEMIC PLANNING

# **Heuristics for MEPK**

Later, the MEPK planner was improved as follows [Wu18]:

- A normal form for ACDF formulas is provided, called **ADNF**, which is claimed to be more space efficient than regular ACDF.
- A notion of **distance** is provided for ADNF formulas, used to guide the search towards states with lower distance from the goal.
- Two heuristic strategies for pruning the search space are also provided.
- → The resulting planner, called MEPL, was benchmarked against MEPK, showing improvements on the vast majority of the tested instances.

# More Heuristics for MEPK

Heuristics for MEPK have been also developed in a subsequent work [FL24]:

- **Enhancement**: use information in the path leading to the first goal-satisfying state to guide the rest of the search.
- Belief lock: in some cases, once an agent has acquired some belief, it can not later forget it (the belief is "locked").
  - ightarrow A set of conditions is identified for **recognizing locked beliefs**.
  - $\rightarrow$  Belief locks are used for **pruning** the search space.
  - $\rightarrow$  For instance, if in the current state  $\Box_i p$  is recognized as a locked belief, and the goal requires that  $\Box_i \neg p$  instead, we can safely prune the search, as the goal is unreachable.
- ightarrow The comparison with the original MEPK planner showed performance improvements. However, no comparison with MEPL was conducted.

# Heuristics for EFP 2.0

EFP 2.0 was later equipped with heuristic search strategies [Fab+24]

- Several heuristics were proposed, based on planning graph methods and on maximal goal sub-formulas satisfaction.
- A **portfolio-like technique** was used to construct a machine learning model for selecting the best heuristic for each input problem.

Preliminary experiments showed the following:

- General improvements over EFP 2.0 with no heuristics.
- Minimality of plans **not guaranteed**.

# DEL-BASED APPROACHES

# Main Challenges

- Higher uncertainty of agents means bigger models.
- Worst-case exponential blowup of size of states after product update.
- **Expensive check** for visited states.
- Search space can be infinite.

# **Bisimulations**

- A bisimulation between two states s and s' is a binary relation Z on their world-sets s.t.:
  - $\rightarrow$  If  $(x, x') \in Z$ , then x and x' are propositionally equivalent (atom) and for each i-successor y of x there exists an i-successor y' of x' s.t.  $(x', y') \in Z$  (forth), and vice versa (back).
- If such a Z exists, we say that s and s' are bisimilar, written  $s \Leftrightarrow s'$ .
- Bisimilarity corresponds to **modal equivalence**:

# Proposition ([BRV01])

Two states are bisimilar iff they satisfy the same formulas in  $\mathcal{L}_{P,Ag}$ .

# **Bisimulations**

- A bisimulation between two states s and s' is a binary relation Z on their world-sets s.t.:
  - $\rightarrow$  If  $(x, x') \in Z$ , then x and x' are propositionally equivalent (atom) and for each i-successor y of x there exists an i-successor y' of x' s.t.  $(x', y') \in Z$  (forth), and vice versa (back).
- If such a Z exists, we say that s and s' are bisimilar, written  $s \Leftrightarrow s'$ .
- Bisimilarity corresponds to **modal equivalence**:

# Proposition ([BRV01])

Two states are bisimilar iff they satisfy the same formulas in  $\mathcal{L}_{P,Ag}$ .

# **Example (Two bisimilar states)**



$$s' =$$

# **Bisimulations**

- A bisimulation between two states s and s' is a binary relation Z on their world-sets s.t.:
  - $\rightarrow$  If  $(x, x') \in Z$ , then x and x' are propositionally equivalent (atom) and for each i-successor y of x there exists an i-successor y' of x' s.t.  $(x', y') \in Z$  (forth), and vice versa (back).
- If such a Z exists, we say that s and s' are bisimilar, written  $s \Leftrightarrow s'$ .
- Bisimilarity corresponds to **modal equivalence**:

# Proposition ([BRV01])

Two states are bisimilar iff they satisfy the same formulas in  $\mathcal{L}_{P,Ag}$ .

# Proposition (Product Update Preserves Bisimilarity [DHK07])

If  $s \Leftrightarrow s'$  and  $\alpha$  is applicable in both, then:

$$s \otimes \alpha \Leftrightarrow s' \otimes \alpha$$

# Reducing the Size of Visited States

# **Definition (Bisimulation Contraction)**

The (bisimulation) contraction of s is the quotient structure  $\lfloor s \rfloor_{\oplus}$  of s induced by the bisimilarity relation.

# Proposition ([BRV01])

 $\lfloor s \rfloor_{\scriptscriptstyle{\stackrel{\text{de}}{=}}}$  is a minimal state (smallest number of worlds and edges) bisimilar to s.

# Reducing the Size of Visited States

# **Definition (Bisimulation Contraction)**

The (bisimulation) contraction of s is the quotient structure  $\lfloor s \rfloor_{\oplus}$  of s induced by the bisimilarity relation.

# Proposition ([BRV01])

 $\lfloor s \rfloor_{\scriptscriptstyle \hookrightarrow}$  is a minimal state (smallest number of worlds and edges) bisimilar to s.

# **V** Key Idea

We can **replace any visited state** s **with** its bisimulation contraction  $\lfloor s \rfloor_{\stackrel{\dots}{\leftrightarrow}}$ .

- $\lfloor s \rfloor_{\stackrel{\triangle}{\hookrightarrow}}$  and s are bisimilar, and so are  $\lfloor s \rfloor_{\stackrel{\triangle}{\hookrightarrow}} \otimes \alpha$  and  $s \otimes \alpha$ .
- The size of  $|s|_{\leftrightarrow}$  is at most the size of s.
- We compute and store less information.
- Technique adopted by several epistemic planners [Fab+20; BDH21; BBM25].

# EFP and PG-EFP

One of the earlier DEL-based planners is the **Epistemic Forward Planner** [Le+18], based on the  $mA^*$  epistemic action description language [Bar+15; Bar+22]:

- **■** Private/public ontic actions.
- Public/(Semi-)-private sensing/announcements actions.

Two search strategies were implemented:

- **EFP**: Breadth-First Search.
- **PG-EFP**: **planning graph heuristic** tailored for the  $mA^*$  fragment.

# **EFP 2.0**

Later, Fabiano et al. [Fab+20] implemented an improved version of the planner, called EFP 2.0.

## Two new search algorithms

- Kripke-based BFS search with bisimulation contractions and check for visited states.
- BFS search based on an alternative semantics for epistemic states called possibilities.
  - More compact representation of states.
  - Natural reuse of previously calculated information.

# **EFP 2.0**

Later, Fabiano et al. [Fab+20] implemented an improved version of the planner, called EFP 2.0.

## Two new search algorithms

- Kripke-based BFS search with bisimulation contractions and check for visited states.
- BFS search based on an alternative semantics for epistemic states called possibilities.
  - More compact representation of states.
  - Natural reuse of previously calculated information.

## **Experiments results**

- Improved performances wrt. EFP 1.0, especially the possibility-based planner.
- Promising results in many epistemic planning benchmarks.
- Muise et al. [Mui+22] compared to EFP 2.0
  - They showed **better performances** than EFP 2.0 on **smaller instances**.
  - And worse results on instances that required higher reasoning depth.

# **Pros and Cons**

### Pros

- **Efficient** running times for the considered fragment.
- **♂** Good scalability on bigger instances.

# Cons

- □ Limited to specific fragments.
- Check for visited states is computationally expensive.

# Improving Check for Visited States

How do we check if a state s has already been visited? Suppose we have a set Visited of visited states:

# Improving Check for Visited States

How do we check if a state *s* has already been visited? Suppose we have a set *Visited* of visited states:

■ Simply check if  $s \in Visited$ .

# Improving Check for Visited States

How do we check if a state *s* has already been visited? Suppose we have a set *Visited* of visited states:

- **1** Simply check if  $s \in Visited$ .
- **2** For all  $t \in Visited$ , check if  $s \Leftrightarrow t$ .

# Improving Check for Visited States

How do we check if a state s has already been visited? Suppose we have a set Visited of visited states:

- **1** Simply check if  $s \in Visited$ .
- **2** For all  $t \in Visited$ , check if  $s \Leftrightarrow t$ .
  - → Works, but very expensive.

# Improving Check for Visited States

How do we check if a state *s* has already been visited? Suppose we have a set *Visited* of visited states:

- **1** Simply check if  $s \in Visited$ .
- **2** For all  $t \in Visited$ , check if  $s \Leftrightarrow t$ .
  - → Works, but very expensive.

Can we do better than this?

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** for computing bisimulation contractions.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** for computing bisimulation contractions.

**Standard partition refinement** [PT87]. Let  $s = ((W, R, L), w_d)$ :

■ Start from an initial partition of *W* calculated wrt. labels.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** for computing bisimulation contractions.

- Start from an initial partition of W calculated wrt. labels.
- lacksquare At each step, iterate through the elements, called **blocks**, B of the partition.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** for computing bisimulation contractions.

- Start from an initial partition of W calculated wrt. labels.
- At each step, iterate through the elements, called **blocks**, *B* of the partition.
- For  $x \in B$  and  $x' \in B'$ , we say that B sees B' via agent i iff  $xR_ix'$ .

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** for computing bisimulation contractions.

- Start from an initial partition of W calculated wrt. labels.
- At each step, iterate through the elements, called **blocks**, *B* of the partition.
- For  $x \in B$  and  $x' \in B'$ , we say that B sees B' via agent i iff  $xR_ix'$ .
- For all agents  $i \in Ag$ , split B into sub-blocks  $B_1, \ldots, B_k$  such that the worlds in each sub-block see the same blocks via agent i.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** for computing bisimulation contractions.

- Start from an initial partition of W calculated wrt. labels.
- At each step, iterate through the elements, called **blocks**, *B* of the partition.
- For  $x \in B$  and  $x' \in B'$ , we say that B sees B' via agent i iff  $xR_ix'$ .
- For all agents  $i \in Ag$ , split B into sub-blocks  $B_1, \ldots, B_k$  such that the worlds in each sub-block see the same blocks via agent i.
- Iterate until no more blocks can be split: the final partition is the set of bisimulation equivalence classes of W.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (OPT) for computing bisimulation contractions:

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (**OPT**) for computing bisimulation contractions:

■ Each block  $B_h$  is given a **numerical index** h.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (**OPT**) for computing bisimulation contractions:

- Each block  $B_h$  is given a **numerical index** h.
- The **signature** a world  $w \in W$  wrt. a partition  $(B_1, ..., B_k)$  is defined as follows

$$\sigma_{(B_1,\ldots,B_k)}(w) = L(w) \cup \{(i,n) \in A_g \times \mathbb{N} \mid \text{for some } v, wR_iv \text{ and } v \in B_n\}$$

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (**OPT**) for computing bisimulation contractions:

- Each block  $B_h$  is given a **numerical index** h.
- The **signature** a world  $w \in W$  wrt. a partition  $(B_1, ..., B_k)$  is defined as follows

$$\sigma_{(B_1,\ldots,B_k)}(w) = L(w) \cup \{(i,n) \in A_g \times \mathbb{N} \mid \text{for some } v, wR_iv \text{ and } v \in B_n\}$$

■ Signatures give **unique identifiers** of worlds wrt. a partition.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (**OPT**) for computing bisimulation contractions:

- Each block  $B_h$  is given a **numerical index** h.
- The **signature** a world  $w \in W$  wrt. a partition  $(B_1, ..., B_k)$  is defined as follows

$$\sigma_{(B_1,\ldots,B_k)}(w) = L(w) \cup \{(i,n) \in A_g \times \mathbb{N} \mid \text{for some } v, wR_iv \text{ and } v \in B_n\}$$

- Signatures give **unique identifiers** of worlds wrt. a partition.
- At each step, blocks are split wrt. their signature, until no more blocks can be split.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (**OPT**) for computing bisimulation contractions:

- Each block  $B_h$  is given a **numerical index** h.
- The **signature** a world  $w \in W$  wrt. a partition  $(B_1, ..., B_k)$  is defined as follows

$$\sigma_{(B_1,\ldots,B_k)}(w) = L(w) \cup \{(i,n) \in A_g \times \mathbb{N} \mid \text{for some } v, wR_iv \text{ and } v \in B_n\}$$

- Signatures give **unique identifiers** of worlds wrt. a partition.
- At each step, blocks are split wrt. their signature, until no more blocks can be split.
- The world-set of the contraction of s is the set of indices of the blocks in the final partition.

Bolander et al. [BDH21] propose an improved algorithm called **ordered partition refinement** (**OPT**) for computing bisimulation contractions:

- Each block  $B_h$  is given a numerical index h.
- The **signature** a world  $w \in W$  wrt. a partition  $(B_1, \ldots, B_k)$  is defined as follows

$$\sigma_{(B_1,\ldots,B_k)}(w) = L(w) \cup \{(i,n) \in A_g \times \mathbb{N} \mid \text{for some } v, wR_iv \text{ and } v \in B_n\}$$

- Signatures give unique identifiers of worlds wrt. a partition.
- At each step, blocks are split wrt. their signature, until no more blocks can be split.
- The world-set of the contraction of s is the set of indices of the blocks in the final partition.

## Theorem ([BDH21])

If  $s \Leftrightarrow s'$ , then the contractions computed by OPT are **identical**.

→ Bisimilarity check can be reduced to identity check!

Using ordered partition refinement, bisimilarity check can be reduced to identity check!

- An algorithm is provided to compute **policies** (mappings from states to actions) with a modified Pruning AND-OR (PrAO) search.
- Results show **improvements** both over a baseline planner that does not use OPT, and over the planner by Engesser et al. [Eng+17], a solver where each agent computes their policy distributively.

# DEPTH-BOUNDED EPISTEMIC PLANNING

# Depth-Bounded Epistemic Planning

In DEL-based epistemic planning agents can reason unboundedly about each other's knowledge.

- → This leads to **undecidability** of the plan existence problem.
- → Often unrealistic in many practical scenarios.

# **Depth-Bounded Epistemic Planning**

In DEL-based epistemic planning agents can reason unboundedly about each other's knowledge.

- → This leads to **undecidability** of the plan existence problem.
- → Often unrealistic in many practical scenarios.

What if we restricted the reasoning depth of the planning agent to some bound b?

- Reduce the size of epistemic states: **bounded bisimulation contractions**.
- ♀ Look for plans requiring the lowest bound: **iterative bound-deepening search**.

## **Bounded Bisimulations**

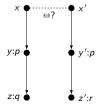
#### **♀** In a Nutshell: b-bisimilarity

- $x \rightleftharpoons_0 x'$  iff they agree on all propositional atoms.
- $\blacksquare x \Leftrightarrow_{b+1} x' \text{ iff } x \xrightarrow{i} y \text{ implies } x' \xrightarrow{i} y' \text{ and } x' \Leftrightarrow_b y' \text{ for some } y' \text{ (and vice versa)}.$

#### Proposition ([BRV01])

Two states are b-bisimilar iff they satisfy the same formulas up to modal depth b.

#### Example (Are $\times$ and $\times'$ bisimilar?)



## **Bounded Bisimulations**

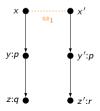
## **♀** In a Nutshell: b-bisimilarity

- $x \rightleftharpoons_0 x'$  iff they agree on all propositional atoms.
- $\blacksquare x \Leftrightarrow_{b+1} x' \text{ iff } x \xrightarrow{i} y \text{ implies } x' \xrightarrow{i} y' \text{ and } x' \Leftrightarrow_b y' \text{ for some } y' \text{ (and vice versa)}.$

#### Proposition ([BRV01])

Two states are b-bisimilar iff they satisfy the same formulas up to modal depth b.

Example (Are  $\times$  and  $\times'$  bisimilar? No, but they are 1-bisimilar!)



#### Rooted *b*-Contractions

Early definitions of bounded contractions in the literature did not behave as expected:

- $\rightarrow$  **Standard** *b*-contraction: quotient structure of a model wrt.  $\rightleftharpoons_b$ .
- → Standard *b*-contractions are in general **not minimal**.

**Example (Standard (left) and minimal (right)** *b*-contractions of a chain state)



- $\rightarrow$  Each world of the chain can be **identified** by a formula of **modal depth**  $\leq b$ .
- $\rightarrow$  Taking the quotient has no effect: we need to **keep all the worlds**.
- $\rightarrow$  Idea: we only need to keep some worlds.

#### Rooted b-Contractions

Early definitions of bounded contractions in the literature did not behave as expected:

- $\rightarrow$  **Standard** *b*-contraction: quotient structure of a model wrt.  $\rightleftharpoons_b$ .
- → Standard *b*-contractions are in general **not minimal**.

Example (Standard (left) and minimal (right) b-contractions of a chain state)

- $\rightarrow$  Each world of the chain can be **identified** by a formula of **modal depth**  $\leq b$ .
- $\rightarrow$  Taking the quotient has no effect: we need to **keep all the worlds**.
- → Idea: we only need to keep some worlds.



We improved the definition: **rooted** *b*-**contractions** guarantee **minimality**.

## Canonical b-Contractions

Similar problem we had for standard contractions: **rooted** *b*-**contractions** of *b*-bisimilar states may be **non-isomorphic**!

 $\rightarrow$  Checking for visited states is **inefficient**.

## Canonical b-Contractions

Similar problem we had for standard contractions: **rooted** *b***-contractions** of *b*-bisimilar states may be **non-isomorphic**!

 $\rightarrow$  Checking for visited states is **inefficient**.



Improved definition called canonical b-contractions, based on the notion of h-signatures:

$$\rightarrow \sigma_0(w) = (L(w), \varnothing)$$

$$\rightarrow \sigma_{h+1}(w) = (L(w), \Sigma_{h+1}(w)), \text{ where } \Sigma_{h+1}(w) \text{ maps to each agent } i \text{ a set}$$

$$\Sigma_{h+1}(w, i) = \{\sigma_h(v) \mid wR_i v\}$$

→ Provide **unique identifiers** of *h*-bisimilar worlds.

#### Theorem (Identity [BBM25])

The canonical b-contractions of b-bisimilar states are identical.

#### From Breadth-First Search...

Let's start from a BFS with standard bisimulation contractions and check for visited states:

#### BFS

```
1: function BFS((s_0, Act, \phi_{\sigma}))
        frontier \leftarrow \langle |s_0|_{\hookrightarrow} \rangle
        visited \leftarrow \emptyset
        while \neg frontier.emptv() do
            s \leftarrow frontier.pop()
 5:
          visited.push(s)
 6:
            if s \models \varphi_{\sigma} then return plan to s
            for all \alpha \in Act applicable in s do
 8.
               s' \leftarrow |s \otimes \alpha|_{\leftrightarrow}
 g.
               If s' is not visited, push it to frontier
10.
        return fail
11:
```

## Proposition ([BRV01])

Two states are bisimilar iff they satisfy the same formulas in  $\mathcal{L}_{P,Ag}$ .

## Proposition ([DHK07])

If  $s \Leftrightarrow s'$  and  $\alpha$  is applicable in both, then  $s \otimes \alpha \Leftrightarrow s' \otimes \alpha$ .

Let  $b_0$  be the **reasoning depth bound** of the planning agent (*i.e.*, the agent can reason to formulas with **modal depth at most**  $b_0$ ).

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
        frontier \leftarrow \langle |s_0|_{\hookrightarrow} \rangle
        visited \leftarrow \emptyset
        while \neg frontier.empty() do
 4:
           s \leftarrow frontier.pop()
 5:
          visited.push(s)
 6:
           if s \models \varphi_{\sigma} then return plan to s
           for all \alpha \in Act applicable in s do
 8:
              s' \leftarrow |s \otimes \alpha|_{\leftrightarrow}
 g.
               If s' is not visited, push it to frontier
10.
        return fail
11:
```

Let  $b_0$  be the **reasoning depth bound** of the planning agent (*i.e.*, the agent can reason to formulas with **modal depth at most**  $b_0$ ).

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
        frontier \leftarrow \langle \| s_0 \|_{b_0}^{\star} \rangle
        visited \leftarrow \emptyset
 3.
        while ¬frontier.empty() do
 4:
           s \leftarrow frontier.pop()
 5:
           visited.push(s)
 6:
           if s \models \varphi_g then return plan to s
 7:
           for all \alpha \in Act applicable in s do
 8:
              s' \leftarrow |s \otimes \alpha|_{\Delta}
 9:
               If s' is not visited, push it to frontier
10:
        return fail
11:
```

## Proposition ([BRV01])

Two states are b-bisimilar iff they satisfy the same formulas up to modal depth b.

Let  $b_0$  be the **reasoning depth bound** of the planning agent (*i.e.*, the agent can reason to formulas with **modal depth at most**  $b_0$ ).

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
        frontier \leftarrow \langle \| s_0 \|_{b_0}^{\star} \rangle
        visited \leftarrow \emptyset
        while \neg frontier.emptv() do
 4:
           s \leftarrow frontier.pop()
 5:
         visited.push(s)
 6:
           if s \models \varphi_g then return plan to s
           for all \alpha \in Act applicable in s do
 8:
              s' \leftarrow ||s \otimes \alpha||_{h}^{\star} (?)
 9:
               If s' is not visited, push it to frontier
10:
        return fail
11:
```

Let  $b_0$  be the **reasoning depth bound** of the planning agent (*i.e.*, the agent can reason to formulas with **modal depth at most**  $b_0$ ).

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
        frontier \leftarrow \langle ||s_0||_{b_0}^{\star} \rangle
        visited \leftarrow \emptyset
 3:
        while \neg frontier.emptv() do
 4:
           s \leftarrow frontier.pop()
 5:
          visited.push(s)
 6:
           if s \models \varphi_{\sigma} then return plan to s
 7:
           for all \alpha \in Act applicable in s do
 8.
              s' \leftarrow ||s \otimes \alpha||_{h}^{\star} (?)
 g.
               If s' is not visited, push it to frontier
10.
        return fail
11:
```

## Proposition ([BL22])

Let  $s \cong_b s'$  and let  $\alpha$  be an action with  $md(\alpha) \leqslant b$ . Then,  $s \otimes \alpha \cong_{b-md(\alpha)} s' \otimes \alpha$ .

Where  $md(\alpha)$  denotes the maximal modal depth of all pre- and postconditions in  $\alpha$ .

Let  $b_0$  be the **reasoning depth bound** of the planning agent (*i.e.*, the agent can reason to formulas with **modal depth at most**  $b_0$ ).

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
        frontier \leftarrow \langle ||s_0||_{b_0}^{\star} \rangle
        visited \leftarrow \emptyset
 3:
        while \neg frontier.emptv() do
 4:
           s \leftarrow frontier.pop()
 5:
           visited.push(s)
 6:
           if s \models \varphi_{\sigma} then return plan to s
 7:
            for all \alpha \in Act applicable in s do
 8.
              s' \leftarrow ||s \otimes \alpha||_{h}^{\star}
 g.
               If s' is not visited, push it to frontier
10.
        return fail
11:
```

## Proposition ([BL22])

Let  $s \cong_b s'$  and let  $\alpha$  be an action with  $md(\alpha) \leqslant b$ . Then,  $s \otimes \alpha \cong_{b-md(\alpha)} s' \otimes \alpha$ .

Where  $md(\alpha)$  denotes the **maximal modal depth** of all pre- and postconditions in  $\alpha$ .

→ We need to update the bound value after an update.

# **Updating Bounds Value After Updates**

We let a **node** of the search space be a pair n = (s, b), where:

- $\blacksquare$  s is the **state** of n (denoted n.state).

# **Updating Bounds Value After Updates**

We let a **node** of the search space be a pair n = (s, b), where:

- $\blacksquare$  s is the **state** of n (denoted n.state).
- **2** b is the **(depth) bound** (denoted n.bound)  $\rightarrow$  **maximum modal depth** of formulas we can safely evaluate in s.

In general, s will be a b-contracted state that can be thought of as an approximation to the "real" state.

 $\rightarrow$  We are always guaranteed that s is at least b-bisimilar to the real state.

# Putting Everything Together

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
       frontier \leftarrow \langle (\|s_0\|_{b_0}^{\star}, b_0) \rangle
       visited \leftarrow \emptyset
        while \neg frontier.emptv() do
          (s,b) \leftarrow frontier.pop()
         visited.push(s)
 6:
           if s \models \phi_{\sigma} then return plan to s
 7:
           for all \alpha \in Act \mid b \ge md(\alpha) do
 8:
              if \alpha is applicable in s then
 9:
                 s' \leftarrow ||s \otimes \alpha||_{b-md(\alpha)}^{\star}
10:
                 n' \leftarrow (s', b - md(\alpha))
11:
                  If s' is not visited, push n' to frontier
12:
        return fail
13.
```

## Proposition ([BRV01])

Two states are b-bisimilar iff they satisfy the same formulas up to modal depth b.

#### Proposition ([BL22])

Let  $s \Leftrightarrow_b s'$  and let  $\alpha$  be an action with  $md(\alpha) \leqslant b$ . Then,  $s \otimes \alpha \Leftrightarrow_{b-md(\alpha)} s' \otimes \alpha$ .

# Putting Everything Together

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
       frontier \leftarrow \langle (||s_0||_{b_0}^*, b_0) \rangle
       visited \leftarrow \emptyset
        while \neg frontier.emptv() do
         (s,b) \leftarrow frontier.pop()
         visited.push(s)
 6:
           if s \models \phi_{\sigma} then return plan to s
 7:
           for all \alpha \in Act \mid b \geqslant md(\alpha) + md(\phi_{\alpha}) do
 8:
              if \alpha is applicable in s then
 9:
                 s' \leftarrow ||s \otimes \alpha||_{b-md(\alpha)}^{\star}
10:
                  n' \leftarrow (s', b - md(\alpha))
11:
                  If s' is not visited, push n' to frontier
12:
        return fail
13.
```

## Proposition ([BRV01])

Two states are b-bisimilar iff they satisfy the same formulas up to modal depth b.

#### Proposition ([BL22])

Let  $s \Leftrightarrow_b s'$  and let  $\alpha$  be an action with  $md(\alpha) \leqslant b$ . Then,  $s \otimes \alpha \Leftrightarrow_{b-md(\alpha)} s' \otimes \alpha$ .

## Putting Everything Together

#### **BoundedSearch**

```
1: function BoundedSearch((s_0, Act, \phi_{\sigma}), b_0)
        frontier \leftarrow \langle (\| s_0 \|_{b_0}^*, b_0) \rangle
        visited \leftarrow \emptyset
        while \neg frontier.emptv() do
          (s, b) \leftarrow frontier.pop()
          visited.push(s)
 6:
 7:
           if s \models \varphi_{\sigma} then return plan to s
           for all \alpha \in Act \mid b \geqslant md(\alpha) + md(\phi_{\alpha}) do
 8:
               if \alpha is applicable in s then
 g.
                 s' \leftarrow ||s \otimes \alpha||_{b-md(\alpha)}^{\star}
10:
                  n' \leftarrow (s', b - md(\alpha))
11:
                  if s' \notin visited then frontier.push(n')
12:
13:
        return fail
```

#### Proposition ([BRV01])

Two states are b-bisimilar iff they satisfy the same formulas up to modal depth b.

#### Proposition ([BL22])

Let  $s \Leftrightarrow_b s'$  and let  $\alpha$  be an action with  $md(\alpha) \leqslant b$ . Then,  $s \otimes \alpha \Leftrightarrow_{b-md(\alpha)} s' \otimes \alpha$ .

#### Theorem ([BBM25])

The canonical b-contractions of b-bisimilar states are **identical**.

### **Iterative Bound-Deepening Search**

#### **Iterative Bound-Deepening Search**

- 1: **function IBDS**( $T = (s_0, Act, \phi_g)$ )
- 2: **for**  $b \leftarrow md(\phi_g)$  **to**  $\infty$  **do**
- 3:  $\pi \leftarrow \text{BoundedSearch}(T, b)$
- 4: if  $\pi \neq fail$  then return  $\pi$

#### We call **BoundedSearch** over increasing values of *b*:

- $\rightarrow$  If  $b < md(\phi_g)$ , then the **bound is too low** to safely evaluate the goal formula.
- $\rightarrow$  So initially we let  $b = md(\varphi_g)$ .
- $\rightarrow$  If no goal is found with bound *b*, we increment the bound and try again.

In a node n=(s,b), the state s can be considered as an **approximation to modal depth** b of some "true state" t (namely, we are guaranteed that  $s \Leftrightarrow_b t$ ). However:

In a node n=(s,b), the state s can be considered as an **approximation to modal depth** b of some "true state" t (namely, we are guaranteed that  $s \Leftrightarrow_b t$ ). However:

■ In general it could be that  $s \Leftrightarrow t!$ 

In a node n=(s,b), the state s can be considered as an **approximation to modal depth** b of some "true state" t (namely, we are guaranteed that  $s \rightleftharpoons_b t$ ). However:

- In general it could be that  $s \Leftrightarrow t!$
- In this case, when we update s with an action  $\alpha$ , we don't have to decrease the bound.
  - → Recall that bisimilarity is preserved after product update!

In a node n=(s,b), the state s can be considered as an **approximation to modal depth** b of some "true state" t (namely, we are guaranteed that  $s \rightleftharpoons_b t$ ). However:

- In general it could be that  $s \Leftrightarrow t!$
- In this case, when we update s with an action  $\alpha$ , we don't have to decrease the bound.
  - → Recall that **bisimilarity is preserved** after product update!

We can use this idea to include the following **optimizations** in BoundedSearch:

- We add a **third parameter** called *is\_bisim* to our nodes, representing **whether the** state of a node is bisimilar to its corresponding true state.
- Depending on whether *is\_bisim* holds, we **update a node with the appropriate bound value**.

In a node n=(s,b), the state s can be considered as an **approximation to modal depth** b of some "true state" t (namely, we are guaranteed that  $s \rightleftharpoons_b t$ ). However:

- In general it could be that  $s \Leftrightarrow t!$
- In this case, when we update s with an action  $\alpha$ , we don't have to decrease the bound.
  - → Recall that **bisimilarity is preserved** after product update!

We can use this idea to include the following optimizations in BoundedSearch:

- We add a **third parameter** called *is\_bisim* to our nodes, representing **whether the** state of a node is bisimilar to its corresponding true state.
- Depending on whether *is\_bisim* holds, we **update a node with the appropriate bound value**.
- Across different iterations of IBDS, we **preserve all nodes having** is \_bisim true.
  - ightarrow They would otherwise be **recomputed** in the next iteration!

# Soundness, Completeness, Complexity

Let  $T = (s_0, Act, \phi_g)$  be a planning task and let  $b \ge md(\phi_g)$  be a constant.

#### Theorem (Soundness)

If **BoundedSearch**(T, b) returns an action sequence  $\pi$ , then  $\pi$  is a solution to T.

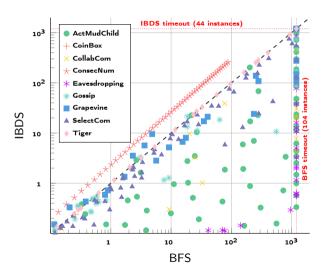
#### Theorem (Completeness)

If T has a solution of length  $\ell$ , then BoundedSearch $(T, c \cdot \ell + md(\varphi_g))$  will find a solution to it, where  $c = \max\{md(\alpha) \mid \alpha \in Act\}$ .

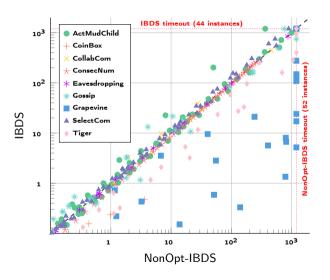
#### Theorem (Complexity)

**BoundedSearch** runs in (b+1)-**ExpTime**.

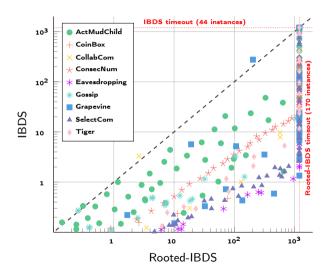
### IBDS vs. BFS



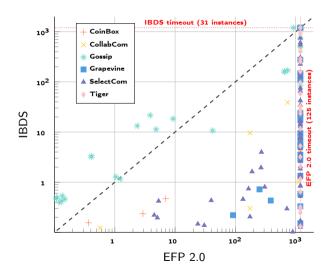
# IBDS vs. Non-Optimized IBDS



#### Canonical vs. Rooted Contractions



### IBDS vs. EFP 2.0





### Many Ideas to Try Out

- DEL-based epistemic planning is a **hard problem**.
- Despite this, there have been many recent promising advancements.
- Different ideas have been explored, from compilation-based techniques, to heuristics, to bisimulation contractions.
- Many ideas haven't been tried yet!
  - ightarrow Symbolic approaches, SAT/SMT-based epistemic planning, more heuristics.

### One Language to Compare Them All

So many different frameworks, with many different semantics. How can we compare them?

- The Epistemic Planning Domain Definition Language.
- Combines a PDDL-like syntax with the full DEL semantics.
- Different formalisms/fragments can be define within the same language!
- Will soon be released!

# **Exciting News!**



- See you all **next year** in Dublin for the **first Epistemic Planning Track** at the IPC!
- More details will be given at the ICAPS

  Community Meeting (Thursday, November 13, at 15:30).

# **Exciting News!**



■ More details will be given at the ICAPS

Community Meeting (Thursday, November 13, at 15:30).

Thank you! Questions?