EFP 2.0: A MULTI-AGENT EPISTEMIC SOLVER WITH MULTIPLE E-STATE REPRESENTATIONS

30th International Conference on Automated Planning and Scheduling

Francesco Fabiano, Alessandro Burigana, Agostino Dovier and Enrico Pontelli

University of Udine & New Mexico State University

October 26–31, 2020

- 1. Multi-Agent Epistemic Planning
- 2. A New Epistemic State Representation
- 3. Contribution
- 4. Conclusions & Future Works

Chapter 1

Multi-Agent Epistemic Planning

Epistemic Reasoning

Reasoning not only about agents' perception of the world but also about agents' *knowledge* and/or *beliefs* of her and others' beliefs.

Epistemic Reasoning

Reasoning not only about agents' perception of the world but also about agents' *knowledge* and/or *beliefs* of her and others' beliefs.

Multi-agent Epistemic Planning Problem [BA11]

Finding plans where the goals can refer to:

- the state of the world
- the knowledge and/or the beliefs of the agents

Chapter 2

A New Epistemic State Representation

A CONTRACT OF A

- Introduced by Gerbrandy and Groeneveld [GG97]
- Used to represent multi-agent information change
- Based on non-well-founded sets
- Corresponds with a class of bisimilar Kripke structures [Ger99]

Possibility [GG97]

Let \mathcal{AG} be a set of agents and $\mathcal F$ a set of propositional variables:

A possibility u is a function that assigns to each propositional variable ℓ ∈ F a truth value u(ℓ) ∈ {0,1} and to each agent ag ∈ AG a set of possibilities u(ag) = σ (information state).

Intuitively:

- The possibility u is a possible interpretation of the world and of the agents' beliefs
- u($\ell)$ specifies the truth value of the literal ℓ
- u(ag) is the set of all the interpretations the agent ag considers possible in u

A New Epistemic State Representation The action language $m \mathcal{A}^{
ho}$

- TITLE STREET
- Introduced in [Fab+19] as modification of $m\mathcal{A}^*$ [Bar+15]

A New Epistemic State Representation The action language $m \mathcal{A}^{
ho}$

- Introduced in [Fab+19] as modification of *mA** [Bar+15]
- Able to comprehensively reason on:
 - unlimited *nested belief*/knowledge; and
 - common belief/knowledge

unlimited nested belief/knowledge; and common belief/knowledge

• Able to comprehensively reason on:

- Models three types of actions:
 - ontic: modifies the world;
 - sensing: refine the knowledge; and
 - announcement: shares information with others.

• Introduced in [Fab+19] as modification of $m\mathcal{A}^*$ [Bar+15]

A New Epistemic State Representation The action language $m \mathcal{A}^{ ho}$

- Introduced in [Fab+19] as modification of $m\mathcal{A}^*$ [Bar+15]
- Able to comprehensively reason on:
 - unlimited nested belief/knowledge; and
 - common belief/knowledge
- Models three types of actions:
 - *ontic:* modifies the world;
 - *sensing:* refine the knowledge; and
 - *announcement:* shares information with others.
- Agents with degrees of awareness w.r.t. actions execution
 Fully observant
 Partial observant
 Oblivious

Chapter 3

Contribution

Provided an updated formalization for $m\mathcal{A}^{\rho}$ transition function:

- Redesigned semantics of $m\mathcal{A}^{\rho}$ (w.r.t. [Fab+19])
 - $\circ~$ More compact and clean
 - More efficient implementation

Provided an updated formalization for $m\mathcal{A}^{\rho}$ transition function:

- Redesigned semantics of $m\mathcal{A}^{\rho}$ (w.r.t. [Fab+19])
 - $\circ~$ More compact and clean
 - More efficient implementation
- Demonstrated that *mA^ρ* respects fundamental properties of multi-agent epistemic reasoning

Comprehensive Epistemic Forward Planner

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- Breadth-first exploration

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- Breadth-first exploration
- Multiple e-states representation:
 - Kripke structures: follows the semantics of $m\mathcal{A}^*$
 - $\circ~$ Possibilities: follows the ${\bf new}$ semantics of $m{\cal A}^{\rho}$

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- Breadth-first exploration
- Multiple e-states representation:
 - Kripke structures: follows the semantics of $m\mathcal{A}^*$
 - $\circ~$ Possibilities: follows the **new** semantics of $m\mathcal{A}^{\rho}$
- Kripke structures size reduction based on Paige and Tarjan's algorithm [PT87]

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- Breadth-first exploration
- Multiple e-states representation:
 - $\,\circ\,$ Kripke structures: follows the semantics of $m\mathcal{A}^*$
 - $\circ~$ Possibilities: follows the **new** semantics of $m\mathcal{A}^{\rho}$
- Kripke structures size reduction based on Paige and Tarjan's algorithm [PT87]
- Mechanism for *already visited* e-states verification

EFP 1.0 = planner of [Le+18]

K-MAL = EFP 2.0 + K. structures

K-OPT = K-MAL + e-state reduction P-MAR = EFP 2.0 + possibilities

TO = Time Out (25 minutes)

WP = Wrong Plan

CB with $ \mathcal{AG} = 3$, $ \mathcal{F} = 8$, $ \mathcal{A} = 21$							
L	EFP 1.0	K-MAL	K-OPT	P-MAR			
2	.003	.003	.006	.001			
3	.048	.077	.097	.016			
5	WP	5.546	1.438	.367			
6	WP	108.080	14.625	2.932			
7	WP	317.077	38.265	6.996			

Coin in the Box domain.

AL with $ \mathcal{AG} = 2$, $ \mathcal{F} = 4$, $ \mathcal{A} = 6$								
d	Efp 1.0	K-MAL	K-OPT	P-MAR				
2	.43	.32	.42	.07				
4	.96	.75	.64	.11				
6	26.20	27.85	13.51	2.44				
8	TO	TO	883.87	150.92				
С	.44	.32	.43	.08				

Assembly Line.

Contribution Experimental Evaluation II

K-MAL = EFP 2.0 + K. structures

P-MAR = EFP 2.0 + possibilities

 $\mathsf{K}\text{-}\mathsf{OPT}=\mathsf{K}\text{-}\mathsf{MAL}+\mathsf{e}\text{-}\mathsf{state}\ \mathsf{reduction}$

-NV = config w/o visited check

Grapevine									
$ \mathcal{AG} $	$ \mathcal{F} $	$ \mathcal{A} $	L	K-MAL-NV	K-MAL	K-OPT-NV	K-OPT	P-MAR-NV	P-MAR
			2	.09	.09	.14	.15	.03	.02
3	9	24	4	9.19	8.13	10.20	9.95	1.34	1.25
			5	94.49	75.32	84.07	75.87	8.67	7.71
			6	372.64	278.93	291.62	230.69	27.63	20.26
			2	1.85	1.786	2.33	2.34	.17	.18
4	12	40	4	403.11	274.53	205.00	152.07	13.49	7.31
			5	TO	TO	TO	1315.38	123.54	36.54
			6	TO	TO	TO	TO	427.97	108.64

Runtimes for the Grapevine domain. We compare the configurations with and without (-NV) the visited e-states check.

Contribution **Experimental Evaluation III**

EFP 1.0 = planner of [Le+18] P-MAR = EFP 2.0 + possibilities

Figure: Comparison between EFP 1.0 and EFP 2.0 on SC.

Chapter 4

Conclusions & Future Works

EFP 2.0 provided significantly **better results** w.r.t. the previous **state-of-the-art**

- Possibilities as e-state
- Dynamic programming paradigm
- Reduced size of e-states
- Complete refactoring of EFP 1.0:
 - Corrections
 - Optimizations

Conclusions & Future Works Future Works

- E-state symbolic representations
- Concept of *non-consistent belief*
- Formalization of novel concepts such as *trust*, *lies* and *misconception*
- Consider heuristics as in [Le+18]

Thank You for the attention

[BA11] Thomas Bolander and Mikkel Birkegaard Andersen. "Epistemic planning for single-and multi-agent systems". In: Journal of Applied Non-Classical Logics 21.1 (2011), pp. 9–34. DOI: 10.1016/0010-0277 (83)90004-5.

[Bar+15] Chitta Baral et al. "An Action Language for Multi-Agent Domains: Foundations". In: CoRR abs/1511.01960 (2015). URL: http://arxiv.org/abs/1511.01960.

Bibliography References II

- [Fab+19] Francesco Fabiano et al. "Non-well-founded set based multi-agent epistemic action language". In: Proceedings of the 34th Italian Conference on Computational Logic. Vol. 2396. CEUR Workshop Proceedings. Trieste, Italy, 2019, pp. 242–259. URL: http://ceur-ws.org/Vol-2396/paper38.pdf.
- [Ger99] Jelle Gerbrandy. *Bisimulations on planet Kripke*. Inst. for Logic, Language and Computation, Univ. van Amsterdam, 1999.
- [GG97] J. Gerbrandy and W. Groeneveld. "Reasoning about information change". In: Journal of Logic, Language and Information 6.2 (1997), pp. 147–169. DOI: 10.1023/A:1008222603071.

Bibliography References III

[Le+18]

Tiep Le et al. "EFP and PG-EFP: Epistemic Forward Search Planners in Multi-Agent Domains". In: *Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling.* Delft, The Netherlands: AAAI Press, 2018, pp. 161–170. ISBN: 978-1-57735-797-1. URL: https://aaai.org/ocs/index.php/ICAPS/ ICAPS18/paper/view/17733.

[PT87] Robert Paige and Robert E Tarjan. "Three partition refinement algorithms". In: SIAM Journal on Computing 16.6 (1987), pp. 973–989.

