
EFP 2.0: A Multi-Agent Epistemic Solver with Multiple e-State

Representations: Supplementary Documentation

Francesco Fabiano1, Alessandro Burigana1, Agostino Dovier1, Enrico Pontelli2

1 DMIF Department, University of Udine, I-33100 Udine, Italy
{francesco.fabiano,agostino.dovier}@uniud.it

burigana.alessandro@spes.uniud.it
2 Computer Science, New Mexico State University, Las Cruces, NM 88003, USA

epontell@cs.nmsu.edu

The following document provides supplementary information for the paper “EFP 2.0: A Multi-
Agent Epistemic Solver with Multiple e-State Representations” submitted to 30th International
Conference on Automated Planning and Scheduling (ICAPS 2020).

In Section A we will demonstrate the properties of mAρ transition function listed on the paper
and in Section B we will present a comparison between the EFP 1.0 and the EFP 2.0 e-states.

A mAρ Transition Function Properties

A.1 Preliminary Definitions

Before starting with the demonstrations we need to introduce some terminology that will help us
avoid unnecessary clutter during the proofs. In particular, let a Domain D, a p ∈ S. where S is
the set of all the possibilities reachable from D(ϕi) with a finite sequence of action instances and
a group of agent AG ⊆ D(AG) be given. The operator BpAG captures all the reachable possibilities
for AG given a starting possibility p.

Let us describe now how this operator can be used to represents the notions of i) agents’ belief;
ii) common knowledge; and iii) nested knowledge.

A.1.1 Agents Beliefs Representation To link the operator introduced above with the concept
of belief let us start with the case where the group of agents AG contains only one element ag. We,
therefore, use Bpag to identify the set of all the possibilities that ag, starting from the possibility p,
cannot distinguish.

The construction of the set identified by Bpag is procedural and it is done by applying the operator

(Bpag)k, with k ∈ N, until the least fixed point is found. The operator (Bpag)k is defined as follows:

(Bpag)k =

{
p(ag) if k = 0

{q | (∃u ∈ (Bpag)k−1)(q ∈ u(ag))} if k ≥ 1

Finally we can define Bpag =
∞⋃
k=1

(Bpag)k. It is easy to see that this is equivalent to the set of

possibilities reached by the operator Bag starting from p and, therefore, that it represents the
beliefs of ag in u.

Let us note that fixed point of the operator (BSAG)k is reached in finite iterations. This is because:

– (BSAG)k is monotonic; meaning that (BSAG)k ⊆ (BSAG)k+1 with k ∈ N (Lemma 1); and
– the set S of all the possibilities reached by applying a finite action instances sequence ∆ to a

given possibility p s.t. |BpAG | = n has a finite number of elements (Proposition 1).

2 F. Fabiano et al.

A.1.2 Common Knowledge Representation
Now, similarly to the single-agent case, we can define the set BpAG . This represents the common

knowledge of AG (CAG) starting from p. As before we introduce the operator (BpAG)k of which the
fixed point will result in BpAG .

(BpAG)k =


⋃

ag∈AG
p(ag) if k = 0

{q | (∃u ∈ (BpAG)k−1)(q ∈
⋃

ag∈AG
u(ag))} if k ≥ 1

A.1.3 Nested Knowledge Representation
Finally, thanks to these notations, we can also express the concept of nested knowledge in a more
compact way. Let two sets of agents AG1 ⊆ D(AG),AG2 ⊆ D(AG) be given; the set of possibilities
reachable by applying CAG1

CAG2
starting from p is:

BpAG1,AG2
= {q | (∃r ∈ BpAG1

)(q ∈ BrAG2
)}

Let us note that, when AG1 or AG2 contains only one agent ag, the nested the operator finds the
correct set of possibilities being Cag and Bag equal.

Lemma 1 (Operator BSAG monotony). The operator (BSAG) is monotonic; meaning that, for
every k ∈ N, (BSAG)k ⊆ (BSAG)k+1.

Proof. Without losing generality let a possibility p and an agent ag be given. To demonstrate the
monotonicity of (Bpag) we start by recalling that:

(Bpag)0 ={q | (q ∈ p(ag))};
(Bpag)1 ={q | (∃u ∈ (Bpag)0)(q ∈ u(ag))};

...

(Bpag)k ={q | (∃u ∈ (Bpag)k−1)(q ∈ u(ag))}.

By construction each possibility respects the KD45 logic (Table 1) and, therefore, some structural
constraints. In particular, to comply with axioms 4 and 5, if a possibility q ∈ p(ag) then q ∈ q(ag).
In term of our operator, this translate into if a possibility q ∈ (Bpag)k−1 then q ∈ (Bpag)k.

It is easy to see that this property3 ensures that the agent’s reachability function respect in-
trospection. That is; when an agent reaches q she has to ‘know’ that herself considers q possible.
Thanks to this property we can now infer that each iteration of the reachability operator (Bpag)k
contains at least (Bpag)k−1 and, therefore, that the operator(BSAG) is monotonic.

Proposition 1 (States Size Finiteness). Given a finite action instances sequence ∆—namely a
plan—and a starting point i, s.t. |BiAG | = n, the set S of all the possibilities generated by applying
∆ to i has a finite number of elements.

Proof. Following Definition 1 we can determine an upper bound for the number of new possibilities
generated after the application of an action instance and, moreover, of an action instance sequence.
In particular from a given possibility i such that |BiAG | = n (where AG is the set of all the agents)

the cardinality of the set Bi′AG will be, at most, equal to 3n. That is because:

3 That translates into self-loops in the graphical state representation.

EFP 2.0: Supplementary Documentation 3

Property of B Axiom

(Bagϕ ∧Bag(ϕ⇒ ψ)) ⇒ Bagψ K

¬Bag⊥ D

Bagϕ⇒ BagBagϕ 4

¬Bagϕ⇒ Bag¬Bagϕ 5

Table 1: KD45 axioms [2].

– when an ontic action is executed each possibility ∈ |BpAG | can be either updated—if reached by
a fully observant agent—or kept unchanged—if reached by an oblivious agent. This means that

an upper bound to the size of Bp
′

AG in case of an ontic action execution is 2n where only the
updated possibilities (n) are new elements of S.

– The case with sensing and annoucement actions is similar

This identifies 2n as upper bound for the growth of a state size and for the generation of new
possibilities after an action execution.Therefore given the size n of the initial state and the length
of the action sequence l we can conclude that |S| ≤ (n× 2l) and it is indeed finite.

A.2 mAρ Properties

In what follows we will demonstrate that the mAρ transition function respects the properties listed
in the paper. Before starting the demonstrations, for the sake of readability, let us re-introduce the
new transition function for mAρ.

Let a domain D, its set of action instances D(AI), and the set S of all the possibilities reachable
from D(ϕi) with a finite sequence of action instances be given. The transition function Φ : D(AI)×
S → S ∪ {∅} for mAρ relative to D is defined as follows.

Definition 1 (mAρ transition function). Allow us to use the compact notation u(F) = {f | f ∈
D(F) ∧ u |= f} ∪ {¬f | f ∈ D(F) ∧ u 6|= f} for the sake of readability. Let an action instance a
∈ D(AI), a possibility u ∈ S and an agent ag ∈ D(AG) be given.

If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

– Let us consider the case of an ontic action instance a. We then define u′ such that:

e(a, u) = {` | (a causes `) ∈ D}; and

e(a, u) = {¬` | ` ∈ e(a, u)} where ¬¬` is replaced by `.

u′(f) =

{
1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

u′(ag) =

u(ag) if ag ∈ Oa⋃
w∈u(ag)

Φ(a,w) if ag ∈ Fa

– if a is a sensing action instance, used to sense the fluent f. We then define u′ such that:

e(a, u) ={f | (a senses f) ∈ D ∧ u |= f}
∪{¬f | (a senses f) ∈ D ∧ u 6|= f}

4 F. Fabiano et al.

u′(F) = u(F)

u′(ag) =


u(ag) if ag ∈ Oa⋃
w∈u(ag)

Φ(a,w) if ag ∈ Pa⋃
w∈u(ag): e(a,w)=e(a,u)

Φ(a,w) if ag ∈ Fa

– if a is an announcement action instance of the fluent formula φ. We then define u′ such that:

e(a, u) =

{
0 if u |= φ

1 if u |= ¬φ

u′(F) = u(F)

u′(ag) =


u(ag) if ag ∈ Oa⋃
w∈u(ag)

Φ(a,w) if ag ∈ Pa⋃
w∈u(ag): e(a,w)=e(a,u)

Φ(a,w) if ag ∈ Fa

A.3 Properties of mAρ

We will now proceed to demonstrate the properties to prove that in mAρ holds what follows.

– If an agent is fully aware of the execution of an action instance then her beliefs will be updated
with the effects of such action execution;

– An agent who is only partially aware of the action occurrence will believe that the agents who
are fully aware of the action occurrence are certain about the action’s effects; and

– An agent who is oblivious of the action occurrence will also be ignorant about its effects.

In the following proofs we will use p′ instead of Φ(a, p) to avoid unnecessary clutter when possible.

Proposition 2 (Ontic Action Properties). Assume that a is an ontic action instance executable
in u s.t. a causes l if ψ belongs to D. In mAρ it holds that:

1. for every agent x ∈ Fa, if u |= Bxψ then u′ |= Bxl;
2. for every agent y ∈ Oa and a belief formula ϕ, u′ |= Byϕ iff u |= Byϕ; and
3. for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula ϕ, if u |= BxByϕ then

u′ |= BxByϕ.

Proof. We will prove each point separately:

1. Assuming the action a is executable in u we have that u |= ψ. This means that:

– If u |= Bxψ we have that ∀p ∈ Bux p |= ψ; this is because, as said in Section A.1.1, Bux represents
the set of possibilities reachable by Bx starting from u.

– In particular we are interested in the set of possibilities reachable by Bx starting from u′, i.e.,
Bu′x = {p′ | (∃p ∈ Bux)(p′ = Φ(p, a))}.

EFP 2.0: Supplementary Documentation 5

– Following Definition 1, we also know that—being x ∈ Fa—if ` = f4 then e(a, u) = {f} and
therefore p′(f) = 1 ∀p′ ∈ Bu′x .

– From this last step we can conclude that every element of Bu′ag entails f.

– As said previously Bu′x represents Bx starting from u′.

– It is easy to see that, if every element in Bu′x entails f, then u′ |= Bxf .

2. As in the previous point we assume the action a is executable in u and this means that:

– If u |= Byϕ we have that every p ∈ Buy entails ϕ.

– Given that, from Definition 1, when y ∈ Oa for each possibility p ∈ Bu
y p(y) = p′(y) it is easy

to see that Buy ≡ Bu
′

y .

– Given that the two sets of possibilities are the same it means that the reachability functions
that they represent are the same.

– Being the two functions the same it means that ∀ϕ ∈ D u |= Byϕ iff u′ |= Byϕ.

3. Again we assume the executability of the action a and we consider x ∈ Fa and y ∈ Oa:

– Being y ∈ Oa, from Definition 1, we know that p(y) = p′(y) such that p ∈ Bux and p′ is its
updated version ∈ Bu′x .

– This means that for every element in Bux we have an updated version that has the same
reachability function for the agent y.

– Then it is easy to see that Bux,y ≡ Bu
′

x,y and therefore that these two sets contain the same
possibilities.

– As already said in Point 2 when two sets of possibilities are the same they entail the same
formulae.

– Therefore we can conclude that if u |= BxByϕ then u′ |= BxByϕ

Proposition 3 (Sensing Action Properties). Assume that a is a sensing action instance and
D contains the statement a determines f. In mAρ it holds that:

1. if u |= f then u′ |= CFa f;
2. if u |= ¬f then u′ |= CFa¬f;
3. u′ |= CPa(CFa f ∨CFa¬f);
4. u′ |= CFa(CPa(CFa f ∨CFa¬f));
4 The case where a causes ¬f is similar and, therefore, is omitted here

6 F. Fabiano et al.

5. for every agent y ∈ Oa and a belief formula ϕ, u′ |= Byϕ iff u |= Byϕ; and
6. for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula ϕ, if u |= BxByϕ then

u′ |= BxByϕ.

Proof. Let us demonstrate each point separately:

1. In the following we demonstrate Point 1. Being the demonstration for Point 2 similar we will
omit it for the sake of readability.

– First of all we identify the set of all the possibilities reached by the fully observant agents in u
as BuFa

and we remind that, as shown in Section A.1.2, this set corresponds to the possibilities
reached by CFa ;

– We recall that, by hypothesis, u |= f and therefore e(a, u) = {f}.

– We then calculate Bu′Fa
that, following Definition 1, contains only possibilities p′ s.t p′(f) = 1.

– This means that ∀p′ ∈ Bu′Fa
we have that p′ |= f.

– As shown in Point 1 of Theorem 2 given that this set contains only the possibilities that entail
f we can derive that Bu′Fa

|= f.

– Finally, as the set CFa ≡ Bu
′

Fa
, we have that CFa |= f.

2. The proof of this point is similar to the one presented in Point 1 and it is omitted for the sake
of readability.

3. Once again we identify the set of the possibilities reachable by partial observants agent with BuPa
.

We also remind that this set is equal to CPa in u.

– Now to calculate Bu′Pa
, following Definition 1, we apply “Φ(a, u)” to every element of BuPa

.

– To simplify the demonstration let us redefine the partially observant agents’ belief update for
epistemic actions in the following way:

u′(ag) =


⋃

w∈u(ag)
Φ(a,w) if ag ∈ AG, ag ∈ Pa and e(a, u) = e(a,w)⋃

w∈u(ag)
Φ(a,w) if ag ∈ AG, ag ∈ Pa and e(a, u) 6= e(a,w)

Where ag ∈ Pa

– It is easy to identify two disjunct subsets B1Pa
and B2Pa

of Bu′Pa
that contains only possibility

such that:
• B1Pa

|= e(a, u);

• B2Pa
6|= e(a, u);

• (B1Pa
∪ B2Pa

) ≡ Bu′Pa
; and

EFP 2.0: Supplementary Documentation 7

• (B1Pa
∩ B2Pa

) ≡ ∅.

– From these two sets we can now construct the sets B1Pa,Fa
and B2Pa,Fa

that are simply the set of

possibilities reachable from the fully observant agents starting from B1Pa
and B2Pa

respectively.

– Given that the set B1Pa,Fa
resulted from the application of the transition function from the

point of view of fully observant agents, we know from Point 1 of Theorem 2 that for ∀p ∈
B1Pa,Fa

, p |= f.

– This imply that B1Pa,Fa
reaches only possibilities where the interpretation of f is true and

similarly in B2Pa,Fa
only possibilities where the interpretation of f is false.

– This means that B1Pa,Fa
|= f and B2Pa,Fa

|= ¬f.

– It is easy to see then that B1Pa
|= CFa f being B1Pa,Fa

= {p | p ∈
⋃

q∈B1
Pa

q(Fa)} (and similarly

B2Pa
|= CFa¬f).

– Finally being Bu′Pa
= B1Pa

∪ B2
Pa

we can conclude that Bu′Pa
|= CFa f ∨ CFa¬f5 and therefore

u′ |= CPa(CFa f ∨CFa¬f).

4. To prove this point we will make use of the properties demonstrated in previous Points.

– As said in the Section A.1.3, we know that BuFa,Pa
corresponds with the set of possibilities

identified by CFaCPa and it is also equal to {p | (∃q ∈ BuPa
)(p ∈

⋃
ag∈Fa

q(ag))}.

– Now to calculate Bu′Fa
we apply Definition 1 to every element of BuFa

. This means that Bu′Fa
=

{p′ | (∃p ∈ BuFa
)(p′ = Φ(a, p))}.

– We then want to calculate the set {p′ | (∃q′ ∈ Bu′Fa
)(p′ ∈

⋃
ag∈Pa

q′(ag))}.

– To calculate the “point of view” of the partially observants w.r.t. the fully observants we apply
Definition 1 to all the elements of {p | (∃q′ ∈ Bu′Fa

)(p ∈ BqPa
)}.

– It is easy to see that the resulting set is {p′ | (∃q′ ∈ Bu′Fa
)(p′ ∈

⋃
ag∈Pa

q′(ag))} ≡ Bu′Fa,Pa
.

– We showed in the previous point that given the set of possibilities resulted by applying the
transition function entails CFa f ∨CFa¬f.

– This means that Bu′Fa,Pa
|= (CFa f ∨CFa¬f) and therefore, following what said in Section A.1.3,

u′ |= CFa(CPa(CFa f ∨CFa¬f)).
5 The two sets are completely disjuntive as one only contains possibilities that entails f while the other

only possibilities that do not. This means that that does not exist any fully-observant-edge between
possibilities that belongs in two different sets.

8 F. Fabiano et al.

5–6 The proofs for the fifth and sixth points are similar to the ones presented in Point 2 and Point 3
of Theorem 2 respectively and is therefore omitted.

Proposition 4 (Announcement Action Properties). Assume that a is a announcement action
instance and D contains the statement a announces ϕ. If u |= φ it holds that:

1. u′ |= CFaφ;
2. u′ |= CPa(CFaφ ∨CFa¬φ);
3. u′ |= CFa(CPa(CFaφ ∨CFa¬φ));
4. for every agent y ∈ Oa and a belief formula ϕ, u′ |= Byϕ iff u |= Byϕ; and
5. for every pair of agents x ∈ Fa and y ∈ Oa and a belief formula ϕ, if u |= BxByϕ then

u′ |= BxByϕ.

Proof. The demonstration of this proposition follows of Proposition 3 and is therefore omitted for
the sake of the readability.

B e-States Comparison

In this Section we will show some comparison of e-states size between EFP 1.0 and P-MAR. In
particular the goal state, since it is reached after a sensing action execution, is the one that differs
in the size.

We will use an example from the Coin in the Box domain that is used in [1], that is Example
10 of [1], to show their transition function. Firstly we will introduce the example and the we will
show a side-to-side comparison of the e-states generated during the solving process.

Both Kripke structures and possibilities will be presented as labeled graph. Moreover, each
e-state representation will be provided with a table that describes the information of each node.

Before we start let us rapidly introduce the example.

Example 1. The initial state is defined by the conditions:

1. intially CA,B,C(key(A))
2. intially CA,B,C(¬key(B))
3. intially CA,B,C(¬key(C))
4. intially CA,B,C(¬opened)
5. intially CA,B,C(¬Bagtails ∧ ¬Bag¬tails) for ag ∈ {A,B,C}
6. intially CA,B,C(looking(ag)) for ag ∈ {A,B,C}
7. intially tails

The goal is expressed trough the following formulae:

BA¬heads ∧BA(BB(BAheads ∨BA¬heads))

BB(BAheads ∨BA¬heads) ∧ (¬BBheads ∧ ¬BB¬heads)

BC[
∧

ag∈{A,B,C}

(¬Bagheads ∧ ¬Bag¬heads)]

Finally the observability relations of each action instance in ∆c is expressed in the following
Table:

EFP 2.0: Supplementary Documentation 9

distract(C)〈A〉 open〈A〉 peek〈A〉
FD A, B, C A, B A

PD - - B

OD - C C

Table 2: Observability relations of the actions instances in ∆c.

Given the initial conditions we have that the action instances sequence∆c = distract(C)〈A〉; open〈A〉; peek〈A〉
leads to the desired goal. In what follows this we want to give a graphical explanation of both the
transition functions and state-size defined by the two solvers. The e-states are automatically gen-
erated by the planners.

D_0 a,b,c D_1
a,b,c

a,b,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail

D_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail

(a) The initial e-state in EFP 1.0.

D_0 a,b,c D_1
a,b,c

a,b,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail

D_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail

(b) The initial e-state in P-MAR.

Figure 1: The initial state.

10 F. Fabiano et al.

D_0 a,b,c D_1
a,b,c

a,b,c

E_2

b b

a,c

F_3

a,c

b b

a,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
D_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
E_2 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
F_3 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(a) The e-state obtained after the execution of distract(C)〈A〉 in EFP 1.0.

D_0 a,b,c D_1
a,b,c

a,b,c

E_2

b b

a,c E_3
a,c

b b

a,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
D_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
E_2 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
E_3 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(b) The e-state obtained after the execution of distract(C)〈A〉 in P-MAR.

Figure 2: The initial state.

EFP 2.0: Supplementary Documentation 11

D_0 a,b

E_1

a,b

F_2

c

F_3

ca,b

c c

a,b,c
a,b,c

a,b,c

G_4

b

b

a

H_5

a

D_6

c

E_7

cb

b

a

c

c

b b

a,c

a,c

b b

a,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
E_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tail
F_2 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
F_3 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
G_4 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tail
H_5 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, -tail
D_6 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
E_7 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(a) TThe e-state obtained after the execution of open〈A〉 in EFP 1.0.

D_0 a,b D_1
a,b

E_2

c

E_3

c

a,b

c c

a,b,c
a,b,c

a,b,c

F_4

b b

a F_5
a

G_6

c

G_7

c b b

a

c c

b b

a,c
a,c

b b

a,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
D_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tail
E_2 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
E_3 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
F_4 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tail
F_5 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, -tail
G_6 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
G_7 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(b) The e-state obtained after the execution of open〈A〉 in P-MAR.

Figure 3: The initial state.

12 F. Fabiano et al.

D_0 a,b

E_1

a,b

G_2

c

G_3

c

E_0 a,b

F_1

b

c c

a,b

c c

a,b

c c

a,b,c
a,b,c

H_2

c

a,b

cI_3

b

a,b,c

c c

a,b

J_4

b

b

a

L_5

a

D_6

c

E_7

c

K_4

b

b

a

c

c

b

b

a

c

c

M_5

b

b

a

c

c

b b

a,c

a,c

E_6

b

b

c

a

c

b b

a,c

F_7

b

b

c

c

a

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
E_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
E_ 1 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tai l
F_ 1 has_key_a, -has _key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tai l
G_ 2 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tai l
H_ 2 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tai l
G_ 3 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tai l
I_ 3 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tai l
J_ 4 has_key_a, -has _key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tai l
K_ 4 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tai l
L_ 5 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, -tai l
M_ 5 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, -tai l
D_ 6 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tai l
E_ 6 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tai l
E_ 7 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tai l
F_ 7 has_key_a, -has_ key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(a) The e-state obtained after the execution of peek〈A〉 in EFP 1.0.

D_0 a,b D_1
b

E_2

c

E_3

c

a,b

c c

a,b,c
a,b,c

a,b,c

F_4

b b

a

G_5

c

G_6

c

b b

a,c

a,c

b b

a,c

D_0 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
D_1 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tail
E_2 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
E_3 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
F_4 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tail
G_5 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
G_6 has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(b) The e-state obtained after the execution of peek〈A〉 in P-MAR.

Figure 4: The initial state.

EFP 2.0: Supplementary Documentation 13

References

1. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for multi-agent domains: Foundations.
CoRR abs/1511.01960 (2015), http://arxiv.org/abs/1511.01960

2. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. Journal of the ACM (JACM)
41(2), 340–367 (1994). https://doi.org/10.1145/174652.174658

