EFP 2.0: A Multi-Agent Epistemic Solver with Multiple e-State Representations: Supplementary Documentation

Francesco Fabiano¹, Alessandro Burigana¹, Agostino Dovier¹, Enrico Pontelli²

¹ DMIF Department, University of Udine, I-33100 Udine, Italy {francesco.fabiano,agostino.dovier}@uniud.it burigana.alessandro@spes.uniud.it
² Computer Science, New Mexico State University, Las Cruces, NM 88003, USA epontell@cs.nmsu.edu

The following document provides supplementary information for the paper "EFP 2.0: A Multi-Agent Epistemic Solver with Multiple e-State Representations" submitted to 30^{th} International Conference on Automated Planning and Scheduling (ICAPS 2020).

In Section A we will demonstrate the properties of $m\mathcal{A}^{\rho}$ transition function listed on the paper and in Section B we will present a comparison between the EFP 1.0 and the EFP 2.0 e-states.

A $m\mathcal{A}^{\rho}$ Transition Function Properties

A.1 Preliminary Definitions

Before starting with the demonstrations we need to introduce some terminology that will help us avoid unnecessary clutter during the proofs. In particular, let a Domain D, a $\mathbf{p} \in \mathcal{S}$. where \mathcal{S} is the set of all the possibilities reachable from $D(\varphi_i)$ with a finite sequence of action instances and a group of agent $\mathcal{AG} \subseteq D(\mathcal{AG})$ be given. The operator $\mathcal{B}^{\mathsf{p}}_{\mathcal{AG}}$ captures all the reachable possibilities for \mathcal{AG} given a starting possibility \mathbf{p} .

Let us describe now how this operator can be used to represents the notions of i) agents' belief; ii) common knowledge; and iii) nested knowledge.

A.1.1 Agents Beliefs Representation To link the operator introduced above with the concept of belief let us start with the case where the group of agents \mathcal{AG} contains only one element ag. We, therefore, use \mathcal{B}^{p}_{ag} to identify the set of all the possibilities that ag, starting from the possibility p, cannot distinguish.

The construction of the set identified by \mathcal{B}_{ag}^{p} is procedural and it is done by applying the operator $(\mathcal{B}_{ag}^{p})^{k}$, with $k \in \mathbb{N}$, until the *least fixed point* is found. The operator $(\mathcal{B}_{ag}^{p})^{k}$ is defined as follows:

$$(\mathcal{B}_{\mathsf{ag}}^{\mathsf{p}})^{k} = \begin{cases} \mathsf{p}(\mathsf{ag}) & \text{if } k = 0\\ \{\mathsf{q} \mid (\exists \mathsf{u} \in (\mathcal{B}_{\mathsf{ag}}^{\mathsf{p}})^{k-1})(\mathsf{q} \in \mathsf{u}(\mathsf{ag}))\} & \text{if } k \ge 1 \end{cases}$$

Finally we can define $\mathcal{B}_{ag}^{p} = \bigcup_{k=1}^{\infty} (\mathcal{B}_{ag}^{p})^{k}$. It is easy to see that this is equivalent to the set of possibilities reached by the operator \mathbf{B}_{ag} starting from p and, therefore, that it represents the beliefs of ag in u.

Let us note that fixed point of the operator $(\mathcal{B}_{\mathcal{A}\mathcal{G}}^{\mathcal{S}})^k$ is reached in finite iterations. This is because: $(\mathcal{B}^{\mathcal{S}})^k$ is monotonic, meaning that $(\mathcal{B}^{\mathcal{S}})^k \in (\mathcal{B}^{\mathcal{S}})^{k+1}$ with $h \in \mathbb{N}$ (Lemma 1); and

- (𝔅^𝔅_{𝔅𝔅})^k is monotonic; meaning that (𝔅^𝔅_{𝔅𝔅})^k ⊆ (𝔅^𝔅_{𝔅𝔅})^{k+1} with k ∈ ℕ (Lemma 1); and
- the set 𝔅 of all the possibilities reached by applying a finite action instances sequence Δ to a given possibility p s.t. |𝔅^𝔅_{𝔅𝔅}| = n has a finite number of elements (Proposition 1).

A.1.2 Common Knowledge Representation

Now, similarly to the single-agent case, we can define the set $\mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}}$. This represents the *common* knowledge of $\mathcal{A}\mathcal{G}$ ($\mathbf{C}_{\mathcal{A}\mathcal{G}}$) starting from p . As before we introduce the operator $(\mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}})^k$ of which the fixed point will result in $\mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}}$.

$$(\mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}})^{k} = \begin{cases} \bigcup_{\mathsf{ag}\in\mathcal{A}\mathcal{G}}\mathsf{p}(\mathsf{ag}) & \text{if } k = 0\\ \{\mathsf{q} \mid (\exists \mathsf{u} \in (\mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}})^{k-1})(\mathsf{q} \in \bigcup_{\mathsf{ag}\in\mathcal{A}\mathcal{G}}\mathsf{u}(\mathsf{ag}))\} & \text{if } k \geq 1 \end{cases}$$

A.1.3 Nested Knowledge Representation

Finally, thanks to these notations, we can also express the concept of *nested knowledge* in a more compact way. Let two sets of agents $\mathcal{AG}_1 \subseteq D(\mathcal{AG})$, $\mathcal{AG}_2 \subseteq D(\mathcal{AG})$ be given; the set of possibilities reachable by applying $\mathbf{C}_{\mathcal{AG}_1}\mathbf{C}_{\mathcal{AG}_2}$ starting from p is:

$$\mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}_{1},\mathcal{A}\mathcal{G}_{2}} = \{\mathsf{q} \mid (\exists \mathsf{r} \in \mathcal{B}^{\mathsf{p}}_{\mathcal{A}\mathcal{G}_{1}})(\mathsf{q} \in \mathcal{B}^{\mathsf{r}}_{\mathcal{A}\mathcal{G}_{2}})\}$$

Let us note that, when \mathcal{AG}_1 or \mathcal{AG}_2 contains only one agent ag, the nested the operator finds the correct set of possibilities being C_{ag} and B_{ag} equal.

Lemma 1 (Operator $\mathcal{B}^{\mathcal{S}}_{\mathcal{A}\mathcal{G}}$ **monotony).** The operator $(\mathcal{B}^{\mathcal{S}}_{\mathcal{A}\mathcal{G}})$ is monotonic; meaning that, for every $k \in \mathbb{N}$, $(\mathcal{B}^{\mathcal{S}}_{\mathcal{A}\mathcal{G}})^k \subseteq (\mathcal{B}^{\mathcal{S}}_{\mathcal{A}\mathcal{G}})^{k+1}$.

Proof. Without losing generality let a possibility p and an agent ag be given. To demonstrate the monotonicity of (\mathcal{B}_{ag}^{p}) we start by recalling that:

$$\begin{split} (\mathcal{B}^{\mathrm{p}}_{\mathrm{ag}})^0 =& \{ \mathsf{q} \mid (\mathsf{q} \in \mathsf{p}(\mathrm{ag})) \}; \\ (\mathcal{B}^{\mathrm{p}}_{\mathrm{ag}})^1 =& \{ \mathsf{q} \mid (\exists \mathsf{u} \in (\mathcal{B}^{\mathrm{p}}_{\mathrm{ag}})^0) (\mathsf{q} \in \mathsf{u}(\mathrm{ag})) \}; \\ & \vdots \\ (\mathcal{B}^{\mathrm{p}}_{\mathrm{ag}})^k =& \{ \mathsf{q} \mid (\exists \mathsf{u} \in (\mathcal{B}^{\mathrm{p}}_{\mathrm{ag}})^{k-1}) (\mathsf{q} \in \mathsf{u}(\mathrm{ag})) \}. \end{split}$$

By construction each possibility respects the **KD45** logic (Table 1) and, therefore, some structural constraints. In particular, to comply with axioms 4 and 5, if a possibility $q \in p(ag)$ then $q \in q(ag)$. In term of our operator, this translate into *if a possibility* $q \in (\mathcal{B}_{ag}^{p})^{k-1}$ then $q \in (\mathcal{B}_{ag}^{p})^{k}$.

It is easy to see that this property³ ensures that the agent's reachability function respect introspection. That is; when an agent reaches q she has to 'know' that herself considers q possible. Thanks to this property we can now infer that each iteration of the reachability operator $(\mathcal{B}_{ag}^{p})^{k}$ contains at least $(\mathcal{B}_{ag}^{p})^{k-1}$ and, therefore, that the operator (\mathcal{B}_{AG}^{S}) is monotonic.

Proposition 1 (States Size Finiteness). Given a finite action instances sequence Δ —namely a plan—and a starting point i, s.t. $|\mathcal{B}_{AG}^{i}| = n$, the set S of all the possibilities generated by applying Δ to i has a finite number of elements.

Proof. Following Definition 1 we can determine an upper bound for the number of new possibilities generated after the application of an action instance and, moreover, of an action instance sequence. In particular from a given possibility i such that $|\mathcal{B}_{\mathcal{AG}}^{i}| = n$ (where \mathcal{AG} is the set of all the agents) the cardinality of the set $\mathcal{B}_{\mathcal{AG}}^{i'}$ will be, at most, equal to 3n. That is because:

 $^{^{3}}$ That translates into self-loops in the graphical state representation.

Property of \mathcal{B}	Axiom
$\left[(\mathbf{B}_{ag}\varphi \wedge \mathbf{B}_{ag}(\varphi \Rightarrow \psi)) \Rightarrow \mathbf{B}_{ag}\psi \right]$	K
$ eg \mathbf{B}_{ag} ot$	D
$\mathbf{B}_{ag} \varphi \Rightarrow \mathbf{B}_{ag} \mathbf{B}_{ag} \varphi$	4
$\neg \mathbf{B}_{ag}\varphi \Rightarrow \mathbf{B}_{ag}\neg \mathbf{B}_{ag}\varphi$	5

Table 1: $\mathbf{KD45}$ axioms [2].

- when an *ontic* action is executed each possibility $\in |\mathcal{B}^{\mathsf{p}}_{\mathcal{AG}}|$ can be either updated—if reached by a fully observant agent—or kept unchanged—if reached by an oblivious agent. This means that an upper bound to the size of $\mathcal{B}^{\mathsf{p}'}_{\mathcal{AG}}$ in case of an ontic action execution is 2n where only the updated possibilities (n) are new elements of \mathcal{S} .
- The case with *sensing* and *annoucement* actions is similar

This identifies 2n as upper bound for the growth of a state size and for the generation of new possibilities after an action execution. Therefore given the size n of the initial state and the length of the action sequence l we can conclude that $|\mathcal{S}| \leq (n \times 2^l)$ and it is indeed finite.

A.2 $m\mathcal{A}^{\rho}$ Properties

In what follows we will demonstrate that the $m\mathcal{A}^{\rho}$ transition function respects the properties listed in the paper. Before starting the demonstrations, for the sake of readability, let us re-introduce the new transition function for $m\mathcal{A}^{\rho}$.

Let a domain D, its set of action instances $D(\mathcal{AI})$, and the set \mathcal{S} of all the possibilities reachable from $D(\varphi_i)$ with a finite sequence of action instances be given. The transition function $\Phi: D(\mathcal{AI}) \times \mathcal{S} \to \mathcal{S} \cup \{\emptyset\}$ for $m\mathcal{A}^{\rho}$ relative to D is defined as follows.

Definition 1 ($m\mathcal{A}^{\rho}$ transition function). Allow us to use the compact notation $u(\mathcal{F}) = \{f \mid f \in D(\mathcal{F}) \land u \models f\} \cup \{\neg f \mid f \in D(\mathcal{F}) \land u \not\models f\}$ for the sake of readability. Let an action instance $a \in D(\mathcal{AI})$, a possibility $u \in S$ and an agent $ag \in D(\mathcal{AG})$ be given.

If a is not executable in u, then $\Phi(a, u) = \emptyset$ otherwise $\Phi(a, u) = u'$, where:

– Let us consider the case of an ontic action instance a. We then define u' such that:

$$e(\mathbf{a}, \mathbf{u}) = \{\ell \mid (\mathbf{a} \ causes \ \ell) \in D\}; and$$
$$\overline{e(\mathbf{a}, \mathbf{u})} = \{\neg \ell \mid \ell \in e(\mathbf{a}, \mathbf{u})\} where \neg \neg \ell \text{ is replaced by } \ell.$$

$$\begin{split} \mathsf{u}'(\mathsf{f}) &= \begin{cases} 1 & \textit{if } \mathsf{f} \in (\mathsf{u}(\mathcal{F}) \setminus \overline{e(\mathsf{a},\mathsf{u})}) \cup e(\mathsf{a},\mathsf{u}) \\ 0 & \textit{if } \neg \mathsf{f} \in (\mathsf{u}(\mathcal{F}) \setminus \overline{e(\mathsf{a},\mathsf{u})}) \cup e(\mathsf{a},\mathsf{u}) \end{cases} \\ \mathsf{u}'(\mathsf{ag}) &= \begin{cases} \mathsf{u}(\mathsf{ag}) & \textit{if } \mathsf{ag} \in O_{\mathsf{a}} \\ \bigcup_{\mathsf{w} \in \mathsf{u}(\mathsf{ag})} \varPhi(\mathsf{a},\mathsf{w}) & \textit{if } \mathsf{ag} \in F_{\mathsf{a}} \end{cases} \end{split}$$

- if a is a sensing action instance, used to sense the fluent f. We then define u' such that:

$$e(\mathsf{a},\mathsf{u}) = \{\mathsf{f} \mid (\mathsf{a} \text{ senses } \mathsf{f}) \in D \land \mathsf{u} \models \mathsf{f} \}$$
$$\cup \{\neg\mathsf{f} \mid (\mathsf{a} \text{ senses } \mathsf{f}) \in D \land \mathsf{u} \not\models \mathsf{f} \}$$

$$\begin{split} \mathsf{u}'(\mathcal{F}) &= \mathsf{u}(\mathcal{F}) \\ \mathsf{u}'(\mathsf{ag}) &= \begin{cases} \mathsf{u}(\mathsf{ag}) & \textit{if } \mathsf{ag} \in O_\mathsf{a} \\ \bigcup_{\mathsf{w} \in \mathsf{u}(\mathsf{ag})} \varPhi(\mathsf{a},\mathsf{w}) & \textit{if } \mathsf{ag} \in P_\mathsf{a} \\ \bigcup_{\mathsf{w} \in \mathsf{u}(\mathsf{ag}): \ e(\mathsf{a},\mathsf{w}) = e(\mathsf{a},\mathsf{u})} \varPhi(\mathsf{a},\mathsf{w}) & \textit{if } \mathsf{ag} \in F_\mathsf{a} \end{cases} \end{split}$$

- if a is an announcement action instance of the fluent formula ϕ . We then define u' such that:

$$e(\mathsf{a},\mathsf{u}) = \begin{cases} 0 & \text{if } \mathsf{u} \models \phi \\ 1 & \text{if } \mathsf{u} \models \neg \phi \end{cases}$$

$$\begin{split} \mathbf{u}'(\mathcal{F}) &= \mathbf{u}(\mathcal{F}) \\ \mathbf{u}'(\mathsf{ag}) &= \begin{cases} \mathsf{u}(\mathsf{ag}) & \textit{if } \mathsf{ag} \in O_\mathsf{a} \\ \bigcup & \mathsf{if } \mathsf{ag} \in P_\mathsf{a} \\ w \in \mathsf{u}(\mathsf{ag}) & \textit{if } \mathsf{ag} \in F_\mathsf{a} \\ \bigcup & \mathsf{w} \in \mathsf{u}(\mathsf{ag}) : e(\mathsf{a},\mathsf{w}) = e(\mathsf{a},\mathsf{u}) \end{cases} \end{split}$$

Properties of $m\mathcal{A}^{ ho}$ A.3

We will now proceed to demonstrate the properties to prove that in \mathcal{M}^{ρ} holds what follows.

- If an agent is fully aware of the execution of an action instance then her beliefs will be updated with the effects of such action execution;
- An agent who is only partially aware of the action occurrence will believe that the agents who are fully aware of the action occurrence are certain about the action's effects; and
- An agent who is oblivious of the action occurrence will also be ignorant about its effects.

In the following proofs we will use p' instead of $\Phi(a, p)$ to avoid unnecessary clutter when possible.

Proposition 2 (Ontic Action Properties). Assume that a is an ontic action instance executable in u s.t. a causes l if ψ belongs to D. In $m\mathcal{A}^{\rho}$ it holds that:

- 1. for every agent $x \in F_a$, if $u \models B_x \psi$ then $u' \models B_x l$;
- 2. for every agent $y \in O_a$ and a belief formula φ , $u' \models B_y \varphi$ iff $u \models B_y \varphi$; and 3. for every pair of agents $x \in F_a$ and $y \in O_a$ and a belief formula φ , if $u \models B_x B_y \varphi$ then $\mathbf{u'} \models \mathbf{B}_{\mathsf{x}} \mathbf{B}_{\mathsf{v}} \varphi.$

Proof. We will prove each point separately:

- 1. Assuming the action **a** is executable in **u** we have that $\mathbf{u} \models \psi$. This means that:
 - If $\mathbf{u} \models \mathbf{B}_{\mathsf{x}} \psi$ we have that $\forall \mathbf{p} \in \mathcal{B}_{\mathsf{x}}^{\mathsf{x}} \mathbf{p} \models \psi$; this is because, as said in Section A.1.1, $\mathcal{B}_{\mathsf{x}}^{\mathsf{x}}$ represents the set of possibilities reachable by \mathbf{B}_{x} starting from u.
 - In particular we are interested in the set of possibilities reachable by \mathbf{B}_{x} starting from u', *i.e.*, $\mathcal{B}_{\mathsf{x}}^{\mathsf{u}'} = \{\mathsf{p}' \mid (\exists \mathsf{p} \in \mathcal{B}_{\mathsf{x}}^{\mathsf{u}})(\mathsf{p}' = \Phi(\mathsf{p}, \mathsf{a}))\}.$

- Following Definition 1, we also know that—being $x \in F_a$ —if $\ell = f^4$ then $e(a, u) = \{f\}$ and therefore $p'(f) = 1 \forall p' \in \mathcal{B}_x^{u'}$.
- From this last step we can conclude that every element of $\mathcal{B}_{ag}^{u'}$ entails f.
- As said previously $\mathcal{B}_x^{u'}$ represents \mathbf{B}_x starting from u'.
- It is easy to see that, if every element in $\mathcal{B}_x^{u'}$ entails f, then $u' \models \mathbf{B}_x f$.
- 2. As in the previous point we assume the action **a** is executable in **u** and this means that:
 - If $\mathbf{u} \models \mathbf{B}_{\mathbf{y}}\varphi$ we have that every $\mathbf{p} \in \mathcal{B}_{\mathbf{y}}^{\mathbf{u}}$ entails φ .
 - Given that, from Definition 1, when $y \in O_a$ for each possibility $p \in \mathcal{B}_y^u \ p(y) = p'(y)$ it is easy to see that $\mathcal{B}_y^u \equiv \mathcal{B}_y^{u'}$.
 - Given that the two sets of possibilities are the same it means that the reachability functions that they represent are the same.
 - Being the two functions the same it means that $\forall \varphi \in D \ \mathbf{u} \models \mathbf{B}_{\mathbf{y}} \varphi$ iff $\mathbf{u}' \models \mathbf{B}_{\mathbf{y}} \varphi$.
- 3. Again we assume the executability of the action a and we consider $x \in F_a$ and $y \in O_a$:
 - Being $y \in O_a$, from Definition 1, we know that p(y) = p'(y) such that $p \in \mathcal{B}_x^u$ and p' is its updated version $\in \mathcal{B}_x^{u'}$.
 - This means that for every element in \mathcal{B}_x^u we have an updated version that has the same reachability function for the agent y.
 - Then it is easy to see that $\mathcal{B}_{x,y}^{u} \equiv \mathcal{B}_{x,y}^{u'}$ and therefore that these two sets contain the same possibilities.
 - As already said in Point 2 when two sets of possibilities are the same they entail the same formulae.
 - Therefore we can conclude that if $\mathbf{u} \models \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{y}} \varphi$ then $\mathbf{u}' \models \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{y}} \varphi$

Proposition 3 (Sensing Action Properties). Assume that a is a sensing action instance and D contains the statement a determines f. In mA^{ρ} it holds that:

1. if $\mathbf{u} \models \mathbf{f}$ then $\mathbf{u}' \models \mathbf{C}_{F_{a}}\mathbf{f}$; 2. if $\mathbf{u} \models \neg \mathbf{f}$ then $\mathbf{u}' \models \mathbf{C}_{F_{a}} \neg \mathbf{f}$; 3. $\mathbf{u}' \models \mathbf{C}_{P_{a}}(\mathbf{C}_{F_{a}}\mathbf{f} \lor \mathbf{C}_{F_{a}} \neg \mathbf{f})$; 4. $\mathbf{u}' \models \mathbf{C}_{F_{a}}(\mathbf{C}_{P_{a}}(\mathbf{C}_{F_{a}}\mathbf{f} \lor \mathbf{C}_{F_{a}} \neg \mathbf{f}))$;

⁴ The case where **a causes** $\neg f$ is similar and, therefore, is omitted here

- 5. for every agent $y \in O_a$ and a belief formula φ , $u' \models \mathbf{B}_v \varphi$ iff $u \models \mathbf{B}_v \varphi$; and
- 6. for every pair of agents $x \in F_a$ and $y \in O_a$ and a belief formula φ , if $u \models B_x B_y \varphi$ then $u' \models B_x B_y \varphi$.

Proof. Let us demonstrate each point separately:

- 1. In the following we demonstrate Point 1. Being the demonstration for Point 2 similar we will omit it for the sake of readability.
 - First of all we identify the set of all the possibilities reached by the *fully observant* agents in u as $\mathcal{B}_{F_a}^{u}$ and we remind that, as shown in Section A.1.2, this set corresponds to the possibilities reached by \mathbf{C}_{F_a} ;
 - We recall that, by hypothesis, $\mathbf{u} \models \mathbf{f}$ and therefore $e(\mathbf{a}, \mathbf{u}) = {\mathbf{f}}$.
 - We then calculate $\mathcal{B}_{F_2}^{\mathbf{u}'}$ that, following Definition 1, contains only possibilities \mathbf{p}' s.t $\mathbf{p}'(\mathbf{f}) = 1$.
 - This means that $\forall p' \in \mathcal{B}_{F_a}^{u'}$ we have that $p' \models f$.
 - As shown in Point 1 of Theorem 2 given that this set contains only the possibilities that entail f we can derive that $\mathcal{B}_{F_2}^{\mathbf{u}'} \models \mathbf{f}$.
 - Finally, as the set $\mathbf{C}_{F_a} \equiv \mathcal{B}_{F_a}^{u'}$, we have that $\mathbf{C}_{F_a} \models f$.
- 2. The proof of this point is similar to the one presented in Point 1 and it is omitted for the sake of readability.
- 3. Once again we identify the set of the possibilities reachable by *partial observants* agent with $\mathcal{B}_{P_a}^{u}$. We also remind that this set is equal to \mathbf{C}_{P_a} in \mathbf{u} .
 - Now to calculate $\mathcal{B}_{P_{a}}^{\mathbf{u}'}$, following Definition 1, we apply " $\Phi(\mathbf{a},\mathbf{u})$ " to every element of $\mathcal{B}_{P_{a}}^{\mathbf{u}}$.
 - To simplify the demonstration let us redefine the partially observant agents' belief update for epistemic actions in the following way:

$$\mathsf{u}'(\mathsf{ag}) = \begin{cases} \bigcup_{\mathsf{w}\in\mathsf{u}(\mathsf{ag})} \Phi(\mathsf{a},\mathsf{w}) & \text{ if } \mathsf{ag} \in \mathcal{AG}, \mathsf{ag} \in P_{\mathsf{a}} \text{ and } e(\mathsf{a},\mathsf{u}) = e(\mathsf{a},\mathsf{w}) \\ \bigcup_{\mathsf{w}\in\mathsf{u}(\mathsf{ag})} \Phi(\mathsf{a},\mathsf{w}) & \text{ if } \mathsf{ag} \in \mathcal{AG}, \mathsf{ag} \in P_{\mathsf{a}} \text{ and } e(\mathsf{a},\mathsf{u}) \neq e(\mathsf{a},\mathsf{w}) \end{cases} & \text{ Where } \mathsf{ag} \in P_{\mathsf{a}}$$

– It is easy to identify two disjunct subsets $\mathcal{B}_{P_a}^1$ and $\mathcal{B}_{P_a}^2$ of $\mathcal{B}_{P_a}^{u'}$ that contains only possibility such that:

•
$$\mathcal{B}_{P_a}^1 \models e(\mathsf{a}, \mathsf{u});$$

- $\mathcal{B}_{P_a}^2 \not\models e(a, u);$
- $(\mathcal{B}_{P_2}^1 \cup \mathcal{B}_{P_2}^2) \equiv \mathcal{B}_{P_2}^{\mathsf{u}'};$ and

7

- $(\mathcal{B}^1_{P_a} \cap \mathcal{B}^2_{P_a}) \equiv \emptyset.$
- From these two sets we can now construct the sets $\mathcal{B}^1_{P_a,F_a}$ and $\mathcal{B}^2_{P_a,F_a}$ that are simply the set of possibilities reachable from the *fully observant* agents starting from $\mathcal{B}^1_{P_a}$ and $\mathcal{B}^2_{P_a}$ respectively.
- Given that the set \mathcal{B}_{P_a,F_a}^1 resulted from the application of the transition function from the point of view of fully observant agents, we know from Point 1 of Theorem 2 that for $\forall p \in \mathcal{B}_{P_a,F_a}^1$, $p \models f$.
- This imply that $\mathcal{B}^1_{P_a,F_a}$ reaches only possibilities where the interpretation of f is true and similarly in $\mathcal{B}^2_{P_a,F_a}$ only possibilities where the interpretation of f is false.
- This means that $\mathcal{B}_{P_2,F_2}^1 \models \mathsf{f}$ and $\mathcal{B}_{P_2,F_2}^2 \models \neg \mathsf{f}$.
- It is easy to see then that $\mathcal{B}_{P_a}^1 \models \mathbf{C}_{F_a} \mathsf{f}$ being $\mathcal{B}_{P_a,F_a}^1 = \{\mathsf{p} \mid \mathsf{p} \in \bigcup_{\mathsf{q} \in \mathcal{B}_{P_a}^1} \mathsf{q}(F_a)\}$ (and similarly $\mathcal{B}_{P_a}^2 \models \mathbf{C}_{F_a} \neg \mathsf{f}$).
- Finally being $\mathcal{B}_{P_a}^{u'} = \mathcal{B}_{P_a}^1 \cup \mathcal{B}_{P_a}^2$ we can conclude that $\mathcal{B}_{P_a}^{u'} \models \mathbf{C}_{F_a} \mathsf{f} \vee \mathbf{C}_{F_a} \neg \mathsf{f}^5$ and therefore $\mathfrak{u}' \models \mathbf{C}_{P_a}(\mathbf{C}_{F_a} \mathsf{f} \vee \mathbf{C}_{F_a} \neg \mathsf{f}).$
- 4. To prove this point we will make use of the properties demonstrated in previous Points.
 - As said in the Section A.1.3, we know that $\mathcal{B}_{F_a,P_a}^{\mathsf{u}}$ corresponds with the set of possibilities identified by $\mathbf{C}_{F_a}\mathbf{C}_{P_a}$ and it is also equal to $\{\mathsf{p} \mid (\exists \mathsf{q} \in \mathcal{B}_{P_a}^{\mathsf{u}})(\mathsf{p} \in \bigcup_{\mathsf{ag} \in F_a} \mathsf{q}(\mathsf{ag}))\}.$
 - Now to calculate $\mathcal{B}_{F_{a}}^{u'}$ we apply Definition 1 to every element of $\mathcal{B}_{F_{a}}^{u}$. This means that $\mathcal{B}_{F_{a}}^{u'} = \{p' \mid (\exists p \in \mathcal{B}_{F_{a}}^{u})(p' = \Phi(a, p))\}.$
 - $\text{ We then want to calculate the set } \{p' \mid (\exists q' \in \mathcal{B}_{F_a}^{u'})(p' \in \bigcup_{ag \in P_a}q'(ag))\}.$
 - To calculate the "point of view" of the partially observants w.r.t. the fully observants we apply Definition 1 to all the elements of $\{ p \mid (\exists q' \in \mathcal{B}_{F_a}^{u'}) (p \in \mathcal{B}_{P_a}^{q}) \}$.
 - It is easy to see that the resulting set is $\{p' \mid (\exists q' \in \mathcal{B}_{F_a}^{u'})(p' \in \bigcup_{ag \in P_a} q'(ag))\} \equiv \mathcal{B}_{F_a,P_a}^{u'}.$
 - We showed in the previous point that given the set of possibilities resulted by applying the transition function entails $\mathbf{C}_{F_a} \mathsf{f} \lor \mathbf{C}_{F_a} \neg \mathsf{f}$.
 - This means that $\mathcal{B}_{F_a,P_a}^{u'} \models (\mathbf{C}_{F_a} \mathsf{f} \lor \mathbf{C}_{F_a} \neg \mathsf{f})$ and therefore, following what said in Section A.1.3, $u' \models \mathbf{C}_{F_a}(\mathbf{C}_{P_a}(\mathbf{C}_{F_a} \mathsf{f} \lor \mathbf{C}_{F_a} \neg \mathsf{f})).$

⁵ The two sets are completely disjuntive as one only contains possibilities that entails f while the other only possibilities that do not. This means that that does not exist any fully-observant-edge between possibilities that belongs in two different sets.

- 8 F. Fabiano et al.
- 5–6 The proofs for the fifth and sixth points are similar to the ones presented in Point 2 and Point 3 of Theorem 2 respectively and is therefore omitted.

Proposition 4 (Announcement Action Properties). Assume that a is a announcement action instance and D contains the statement a **announces** φ . If $\mathbf{u} \models \phi$ it holds that:

- 1. $\mathbf{u}' \models \mathbf{C}_{F_a} \phi;$
- 2. $\mathbf{u}' \models \mathbf{C}_{P_{\mathsf{a}}}(\mathbf{C}_{F_{\mathsf{a}}}\phi \lor \mathbf{C}_{F_{\mathsf{a}}}\neg \phi);$
- 3. $\mathbf{u}' \models \mathbf{C}_{F_{a}}(\mathbf{C}_{F_{a}}\phi \lor \mathbf{C}_{F_{a}}\neg \phi));$
- 4. for every agent $y \in O_a$ and a belief formula φ , $u' \models B_y \varphi$ iff $u \models B_y \varphi$; and
- 5. for every pair of agents $x \in F_a$ and $y \in O_a$ and a belief formula φ , if $u \models B_x B_y \varphi$ then $u' \models B_x B_y \varphi$.

Proof. The demonstration of this proposition follows of Proposition 3 and is therefore omitted for the sake of the readability.

B e-States Comparison

In this Section we will show some comparison of e-states size between EFP 1.0 and P-MAR. In particular the goal state, since it is reached after a *sensing* action execution, is the one that differs in the size.

We will use an example from the *Coin in the Box* domain that is used in [1], that is Example 10 of [1], to show their transition function. Firstly we will introduce the example and the we will show a side-to-side comparison of the e-states generated during the solving process.

Both Kripke structures and possibilities will be presented as labeled graph. Moreover, each e-state representation will be provided with a table that describes the information of each node.

Before we start let us rapidly introduce the example.

Example 1. The initial state is defined by the conditions:

- 1. initially $C_{A,B,C}(\text{key}(A))$
- 2. initially $C_{A,B,C}(\neg key(B))$
- 3. initially $C_{A,B,C}(\neg \text{key}(C))$
- 4. initially $C_{A,B,C}(\neg opened)$
- 5. initially $C_{A,B,C}(\neg B_{ag} \texttt{tails} \land \neg B_{ag} \neg \texttt{tails})$ for $ag \in \{A, B, C\}$
- 6. initially $C_{A,B,C}(looking(ag))$ for $ag \in \{A, B, C\}$
- 7. initially tails

The goal is expressed trough the following formulae:

$$\begin{split} & \mathbf{B}_{\mathsf{A}} \neg \texttt{heads} \land \mathbf{B}_{\mathsf{A}}(\mathbf{B}_{\mathsf{B}}(\mathbf{B}_{\mathsf{A}}\texttt{heads} \lor \mathbf{B}_{\mathsf{A}} \neg \texttt{heads})) \\ & \mathbf{B}_{\mathsf{B}}(\mathbf{B}_{\mathsf{A}}\texttt{heads} \lor \mathbf{B}_{\mathsf{A}} \neg \texttt{heads}) \land (\neg \mathbf{B}_{\mathsf{B}}\texttt{heads} \land \neg \mathbf{B}_{\mathsf{B}} \neg \texttt{heads}) \\ & \mathbf{B}_{\mathsf{C}}[\bigwedge_{\mathsf{ag} \in \{\mathsf{A},\mathsf{B},\mathsf{C}\}} (\neg \mathbf{B}_{\mathsf{ag}}\texttt{heads} \land \neg \mathbf{B}_{\mathsf{ag}} \neg \texttt{heads})] \end{split}$$

Finally the observability relations of each action instance in Δ_c is expressed in the following Table:

9

	$\texttt{distract}(C)\langleA\rangle$	$\mathtt{open}\langle A angle$	$\mathtt{peek}\langle A\rangle$
F_D	A, B, C	A, B	A
P_D	-	-	В
O_D	-	С	C

Table 2: Observability relations of the actions instances in Δ_c .

Given the initial conditions we have that the action instances sequence $\Delta_c = \text{distract}(C)\langle A \rangle$; $\text{peek}\langle A \rangle$ leads to the desired goal. In what follows this we want to give a graphical explanation of both the transition functions and state-size defined by the two solvers. The e-states are automatically generated by the planners.

	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
D_1	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail

(a) The initial e-state in EFP 1.0.

	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail	
D_1	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail	

(b) The initial e-state in P-MAR.

Figure 1: The initial state.

D_0	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
D_1	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
E_2	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
F_3	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(a) The e-state obtained after the execution of $\texttt{distract}(\mathsf{C})\langle\mathsf{A}\rangle$ in EFP 1.0.

D_0	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
D_1	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
E_2	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
E_3	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(b) The e-state obtained after the execution of $\mathtt{distract}(C)\langle A\rangle$ in P-MAR.

Figure 2: The initial state.

(a) TThe e-state obtained after the execution of $open\langle A \rangle$ in EFP 1.0.

D_0	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
D_1	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tail
E_2	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
E_3	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
F_4	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tail
F_5	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, -tail
G_6	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
G_7	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(b) The e-state obtained after the execution of $\mathtt{open}\langle \mathsf{A}\rangle$ in P-MAR.

Figure 3: The initial state.

(a) The e-state obtained after the execution of $peek\langle A \rangle$ in EFP 1.0.

D_0	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, tail
D_1	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, opened, -tail
E_2	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, tail
E_3	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, looking_c, -opened, -tail
F_4	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, opened, tail
G_5	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, tail
G_6	has_key_a, -has_key_b, -has_key_c, looking_a, looking_b, -looking_c, -opened, -tail

(b) The e-state obtained after the execution of $peek\langle A \rangle$ in P-MAR.

Figure 4: The initial state.

References

- Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for multi-agent domains: Foundations. CoRR abs/1511.01960 (2015), http://arxiv.org/abs/1511.01960
- Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. Journal of the ACM (JACM) 41(2), 340–367 (1994). https://doi.org/10.1145/174652.174658