
Modelling Multi-Agent Epistemic Planning in ASP

Supplementary Documentation

Alessandro Burigana1, Francesco Fabiano1, Agostino Dovier1, Enrico Pontelli2

1 DMIF Department, University of Udine, I-33100 Udine, Italy
burigana.alessandro@spes.uniud.it

{francesco.fabiano,agostino.dovier}@uniud.it
2 Computer Science, New Mexico State University, Las Cruces, NM 88003, USA

epontell@cs.nmsu.edu

The following document provides supplementary information for the paper “Modelling Multi-Agent
Epistemic Planning in ASP” submitted to the 36th International Conference on Logic Programming
(ICLP 2020).

A PLATO correctness w.t.r. mAρ

In what follows we will demonstrate that PLATO (ePistemic muLti-agent Answer seT programming
sOlver) is correct with respect to the semantic of the language mAρ, introduced in Fabiano et al.
(2020). In particular, we will prove the correctness of: i) the initial state construction (Proposition 2);
ii) the entailment (Proposition 1); and iii) the transition function (Propositions 3-5). For the sake of
readability each type of action, namely ontic, sensing and announcement, will be treat separately.
To improve the clarity we will only describe features of mAρ that are useful for the demonstrations.

Complete introductions to mAρ and to multi-agent epistemic planning can be found in Fabiano
et al. (2020, 2019) and Le et al. (2018); Kominis and Geffner (2017, 2015); Baral et al. (2015);
Muise et al. (2015); Fagin and Halpern (1994) respectively.

A.1 Preliminary concepts

First of all let us recall some concepts, introduced in Fabiano et al. (2020); Baral et al. (2015), that
will ease the comprehension of the demonstrations.

Let us start with the definition of an epistemic planning domain. Intuitively, an epistemic plan-
ning domain contains all the necessary information to define a planning problem in a multi-agent
epistemic scenario.

Definition 1 (Multi-agent epistemic planning domain). We define a multi-agent epistemic
domain as the tuple D = 〈F ,AG,A, ϕi, ϕg〉 where:

– F is the set of all the fluents of D;
– AG is the set of the agents of D;
– A represents the set of all the actions of D;
– ϕi is belief formula that describes the initial conditions of the planning process; and
– ϕg is belief formula that represents the goal conditions.

Moreover, from now on, with the term action instance we will indicate an element of the set
AI = A×AG. Intuitively, an action instance a〈ag〉 identifies the execution of the action a by the
agent ag.

2 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

Given a domain D we will refer to its components through the parenthesis operator. For instance,
to access the elements F and AG of D we will use the more compact notation D(F) and D(AG),
respectively. Allow us to make use of the compact notations: i) D(BF); and ii) D(S) to indicate:
i) the set of belief formulae that can be built starting from D(F) and D(AG); and ii) the set of all
the e-states reachable from D(ϕi) with a finite sequence of elements of D(AI), respectively.

Next we will briefly recall the concept of epistemic state (e-state) that in mAρ, following Gerbrandy
and Groeneveld (1997), is identified with a possibility.

Definition 2 (mAρ e-State/Possibility). Let AG be a set of agents and F a set of propositional
variables:

– An e-state/possibility u is a function that assigns to each propositional variable f ∈ F a truth
value u(f) ∈ {0, 1} and to each agent ag ∈ AG an information state u(ag) = σ.

– An information state σ is a (possibly non-well-founded) set of e-states/possibilities.

As already mentioned the language mAρ distinguishes between three types of action.

Definition 3 (Action types in mAρ). Given an action a, a fluent f and a fluent formula φ the
three types of action are:

– Ontic action, of the form “a causes f”, used by an agent to modify certain properties of the
world.

– Sensing action, of the form “a determines f”, used by an agent to refine her beliefs about the
world.

– Announcement action, of the form “a announces φ”, used by an agent to affect the beliefs of
other agents.

Finally, another important concept of multi-agent epistemic planning is the action observability.

Definition 4 (Action Observability). The execution of an action might change or not the beliefs
of an agent depending on whether or not she is aware of the action’s occurrence. mAρ identifies
three levels of action observability given an action a, an agent ag:

– fully observant (denoted by ag ∈ Fa) if ag knows about the execution of a and about its effects
on the world;

– partially observant (denoted by ag ∈ Pa) if ag knows about the execution of a but she does not
know how a affected the world;

– oblivious (denoted by ag ∈ Oa) if ag does not know about the execution of a.

Let us note that partial observability for world-altering actions is not admitted as, whenever an
agent is aware of the execution of an ontic action, she must know its effects on the world as well.

Modelling MEP in ASP: Supplementary Documentation 3

Abbreviations. To avoid unnecessary clutter instead of using the predicate possible world(T, R, P)
to identify a generic possibility we will write pos(u) where the lowercase letter in typewriter font

(generally u, v or p) identifies a generic triple (T, R, P). Whenever possible we will present a more
“concrete” version of the ASP predicates by removing parts of the rule that are not necessary to
capture its semantics. For example the rule for entailing a fluent f, that in ASP has the generic
form:

entails(T, R, P, F) :- time(T), holds(T, R, P, F), possible world(T, R, P), fluent(F).

will be rewritten as:

entails(u, f) :- holds(u, f), fluent(f).

Moreover let us make use of the notations Γ and Φ to identify PLATO’s and mAρ’s transition
function respectively. In the following proofs we will use p′ instead of Γ (a, p) or Φ(a, p) when this
does not cause ambiguity.

We are now ready to demonstrate the correctness of PLATO w.r.t. mAρ.

A.2 Entailment correctness

As first step we need to demonstrate that the entailment in PLATO is correct w.r.t. the one intro-
duced in Fabiano et al. (2020). To do that we will identify the predicates in PLATO that corresponds
with an entailment rule in mAρ and prove their correctness. Let us begin by re-introducing the
definition of entailment as defined in Fabiano et al. (2020).

Definition 5 (Entailment w.r.t. possibilities). Let a domain D, the belief formulae ϕ,ϕ1, ϕ2 ∈
D(BF), a fluent f ∈ D(F), an agent ag ∈ D(AG), a group of agents α ⊆ D(AG), and a possibility
u ∈ D(S) be given. The entailment in mAρ is defined as follows:

A. u |= f if u(f) = 1;

B. u |= Bagϕ if for each v ∈ u(ag), v |= ϕ;

C. u |= ¬ϕ if u 6|= ϕ;
D. u |= ϕ1 ∨ ϕ2 if u |= ϕ1 or u |= ϕ2;
E. u |= ϕ1 ∧ ϕ2 if u |= ϕ1 and u |= ϕ2;

F. u |= Eαϕ if u |= Bagϕ for all ag ∈ α;
G. u |= Cαϕ if u |= Ek

αϕ for every k ≥ 0, where E0
αϕ = ϕ and Ek+1

α ϕ = Eα(Ek
αϕ).

On the other hand, in PLATO, to describe the entailment we make use of the predicates holds(u, f)
and entails(u, ϕ) where u represents a possibility, f a fluent and ϕ a belief formula. Intuitively,
through the predicate holds we identify if a fluent is true or false in any given possibility u while,
with the predicate entails, it is possible to verify whether a belief formula is derived starting from
u.

Definition 6 (Entailment in PLATO). Let a domain D, the belief formulae ϕ,ϕ1, ϕ2 ∈ D(BF),
a fluent f ∈ D(F), an agent ag ∈ D(AG), a group of agents α ⊆ D(AG), and a possibility u ∈ D(S)
be given. The predicate entails in PLATO is defined as follows:

4 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

1. entails(u, f) :- holds(u, f), fluent(f).
2. entails(u,¬f) :- holds(u,¬f), fluent(f).

3. not entails(u, b(ag, ϕ)) :- not entails(v, ϕ), believes(u, v, ag).
4. entails(u, b(ag, ϕ)) :- not not entails(u, b(ag, ϕ)).

5. entails(u, neg(ϕ)) :- not entails(u, ϕ).
6. entails(u, or(ϕ1, ϕ2)) :- entails(u, ϕ1).
7. entails(u, or(ϕ1, ϕ2)) :- entails(u, ϕ2).
8. entails(u, and(ϕ1, ϕ2)) :- entails(u, ϕ1), entails(u, ϕ2).

9. not entails(u, c(α,ϕ)) :- not entails(v, ϕ), reaches(u, v, ag).
10. entails(u, c(α,ϕ)) :- not not entails(u, c(α,ϕ)).

A possibility u reaches v if they satisfy the following rules:

11. reaches(u, v, α) :- believes(u, v, ag), contains(α, ag).
12. reaches(u, v, α) :- believes(u, p, ag), contains(α, ag), reaches(p, v, α).

where contains/2 is defined by a set of facts.

Proposition 1 (PLATO entailment correctness w.r.t. mAρ). Given a domain D, the set of
its belief formulae D(BF), and a possibility u ∈ D(S) we have that u |=mA∗ ψ iff u |=PLATO ψ ∀ψ ∈
D(BF).

Proof.
To prove that the ASP encoding of the entailment is correct we will identify each rule of Definition 5
with a predicate of Definition 6.

• Rule A corresponds to Predicates 1 and 2 .

A. u |= f if u(f) = 1

1 . entails(u, f) :- holds(u, f), fluent(f).
2 . entails(u,¬f) :- holds(u,¬f), fluent(f).

Let us note that the predicate holds correctness is derived from Propositions 2, 3-5. In fact, being
the construction of the initial state and the update function correct, it is straightforward to see
that ∀f ∈ D(F) and ∀u ∈ D(S) the predicate holds(u, f) is true iff u(f) = 1 while holds(u, ¬f)
is true iff u(f) = 0.

• Rule B corresponds to Predicate 4 .

B . u |= f if u(f) = 1

3 . not entails(u, b(ag, ϕ)) :- not entails(v, ϕ), believes(u, v, ag).
4 . entails(u, b(ag, ϕ)) :- not not entails(u, b(ag, ϕ)).

Similarly to the previous point, following Propositions 2, 3-5, we can derive the correctness of
the predicate believes and consequently the correctness of reaches. Moreover, for this case we
used an auxiliary predicate not entails (Predicate 3) that checks whether a given formula ϕ is
not entailed by a possibility v. Namely we calculate the set U s.t. @u ∈ U , u 6|= ϕ. This can be
rewritten as ∀u ∈ U , u |= ϕ. Hence, for formulae of the type b(ag, ϕ) we require that all of the
possibilities believed by ag do entail ϕ as in Rule B .

Modelling MEP in ASP: Supplementary Documentation 5

• Rules C , D and E correspond to by Predicate 5 , Predicates 6 , 7 and Predicate 8 respectively.

C . u |= ¬ϕ if u 6|= ϕ;
D . u |= ϕ1 ∨ ϕ2 if u |= ϕ1 or u |= ϕ2

E . u |= ϕ1 ∧ ϕ2 if u |= ϕ1 and u |= ϕ2

5 . entails(u, neg(ϕ)) :- not entails(u, ϕ).
6 . entails(u, or(ϕ1, ϕ2)) :- entails(u, ϕ1).
7 . entails(u, or(ϕ1, ϕ2)) :- entails(u, ϕ2).
8 . entails(u, and(ϕ1, ϕ2)) :- entails(u, ϕ1), entails(u, ϕ2).

These Rules and Predicates represents the inductive steps of the entailment in mAρ and PLATO
respectively, and it is straightforward to check their correspondence. The base cases are Rule A
for mAρ and Predicates 1 , 2 for PLATO.

• Rule F is used to ease the writing of Rule G without adding any semantic to the entailment and
was not necessary to transpose. The formula Eαϕ is, in fact, just a rewriting of

∧
ag∈α

Bagϕ.

• Rule G corresponds to Predicate 10 .

B . u |= Cαϕ if u |= Ek
αϕ for every k ≥ 0, where E0

αϕ = ϕ and Ek+1
α ϕ = Eα(Ek

αϕ)

9 . not entails(u, c(α,ϕ)) :- not entails(v, ϕ), reaches(u, v, ag).
10 . entails(u, c(α,ϕ)) :- not not entails(u, c(α,ϕ)).

Similarly to Predicate 4 for formulae of the type c(α, ϕ) we require that all of the possibilities
reached by α do entail ϕ. This is achieved through an auxiliary predicate not entails (Predi-
cate 9) that checks whether a given formula ϕ is not entailed by a possibility v that is reached
(Predicates 11 and 12) by α.

A.3 Initial state construction correctness

As already mentioned in the paper the initial state description in mAρ must model a finitary
S5-theory to ensure a finite number (up to bisimulation) of e-states that can satisfy the initial
conditions (Son et al., 2014). For the sake of readability let us formally reintroduce the concept
of Finitary S5-theory before proving the correctness of PLATO’s initial state construction (w.r.t.
mAρ).

Definition 7 (Finitary S5-theory (Son et al., 2014)). Let φ be a fluent formula and let
ag ∈ AG be an agent. A finitary S5-theory is a collection of formulae of the form (we use the short
form C φ instead of CAGφ):

(i) φ (ii) C φ (iii) C (Bagφ ∨Bag¬φ) (iv) C (¬Bagφ ∧ ¬Bag¬φ)

Moreover, we require each fluent f ∈ F to appear in at least one of the formulae (ii)–(iv).

Proposition 2 (PLATO initial state construction correctness w.r.t. mAρ). Given a domain
D, the set of its belief formulae D(BF), two possibilities u, v ∈ D(S) such that u is the initial state
in mAρ and v is the initial state in PLATO then u |= ψ iff v |= ψ ∀ψ ∈ D(BF).

6 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

Proof.
To prove that the initial state generated in PLATO is equal to the one derived in mAρ we will show
that PLATO has the same behavior as mAρfor each type of initial condition (formulae (i)–(iv)).

(ii) For a clearer demonstration let us start from the second type of condition, i.e., Cφ. This
formulae are used to determine the set of possible worlds that are contained in the initial e-
state. A fluent f is initially known if there exists a formula C(f) or C(¬f). In the former case,
all the initial possible world must derive that f is true, whereas in the latter that f is false. If
there are no such formulae for f, then it is said to be initially unknown.
By definition mAρ initial e-state contains all the worlds s.t.: 1) are consistent in their fluents’
truth value; 2) entail the correct truth value for each initially known fluent; and 3) generate
all the different combinations of the initially unknown fluents. At the same manner PLATO
determines the set of possible world (i.e., possible world) trough the following predicates:

13. unknown initially(p) :- not initially(C(p)), fluent(p).
14. initial dim(2**K) :- K = {fluent(p): unknown initially(p)}.
15. possible world(1..K) :- initial dim(K).

16. holds(u, p) :- initially(C(p)), possible world(u), fluent(p).
17. K/2 { holds(u, f) : possible world(u)} K/2 :- unknown initially(f), initial dim(K).
18. K/2 {not holds(u, f) : possible world(u)} K/2 :- unknown initially(f), initial dim(K).

Where p can be either f or ¬f and the facts initially(C(p)) are given.

(i) Formulae of type (i) are used to identify which possibility among the initial ones (determined
by the previous step) identifies the pointed world. In particular, this type of condition is used
to express the truth values of the fluents in the initial pointed world. That is, every formulae
expressed through condition of this type must be true in the initial pointed world. In PLATO
this type of condition is expressed as follows:

19. pointed(u) :- initially(p), possible world(u), holds(u, p), fluent(p).

Where p can be either f or ¬f and the facts initially(p) are given.

(iii) Formulae of the form C(Bagφ ∨Bag¬φ) are used to filter out the edges of the initial state. In
particular, during the initial state construction in mAρ formulae of this type remove the edges,
labeled with ag, that link two possible worlds that “disagree” on the truth value of φ. This is
also done in PLATO by means of the following predicates:

20. not b init(u, v, ag) :- possible world({u; v}), initially(C(or(b(ag, φ), b(ag, ¬φ)))).
21. not b init(u, v, ag) :- possible world({u; v}), initially(C(or(b(ag, φ), b(ag, ¬φ)))).
22. believes(u, v, ag) :- possible world({u; v}), not not b init(u, v, ag).

(iv) Formulae of the type (iv) do not filter out any other edges. Since the construction of the initial
state is achieved by removing the edges of a complete graph—i.e., being G the set of initial
possibilities, ∀u ∈ G,∀ag ∈ AG we have that u(ag) = G. We can observe that this type of
formulae do not contribute to this filtering, hence we do not consider them in the initial state
generation in PLATO.

Let us note that, being formulae (i)–(iv) the only ones allowed, PLATO constructs the initial state
only by means of Predicates 13 –22 .

Modelling MEP in ASP: Supplementary Documentation 7

A.4 Transition function correctness

Allow us to use the compact notation u(F) = {f | f ∈ D(F)∧ u |= f} ∪ {¬f | f ∈ D(F)∧ u 6|= f} and
to rewrite the predicate possible world as poss for the sake of readability.

A.4.1 Ontic actions correctness
Let a domain D, its set of action instances D(AI), and the set D(S) of all the e-states reachable
from D(ϕi) with a finite sequence of action instances be given. The transition function Φ : D(AI)×
D(S)→ D(S) ∪ {∅} for ontic actions is defined as follows:

Definition 8 (mAρ ontic actions transition function). Let an ontic action instance a ∈
D(AI), a possibility u ∈ D(S) and an agent ag ∈ D(AG) be given.

If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) = {` | (a causes `) ∈ D}; and

e(a, u) = {¬` | ` ∈ e(a, u)} where ¬¬` is replaced by `.

u′(f) =

{
1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)
H.

u′(ag) =

 u(ag) if ag ∈ Oa⋃
w∈u(ag)

Φ(a,w) if ag ∈ Fa
I.

Definition 9 (PLATO ontic actions transition function). Let an executable ontic action in-
stance a ∈ D(AI) s.t. a causes `, the possibilities u,v ∈ D(S), the possibility pointedu ∈ D(S) s.t.
pointedu represents the pointed possibility before calculating Γ (a, u) and an agent ag ∈ D(AG) be
given. The transition function for a in PLATO is defined as follows:

23. :- plan(T, a), not executable(T, a).

24. poss(u′) :- poss(u), reach fully(pointedu, u), plan(T, a).

25. holds(u′, `) :- causes(a, `), poss(u), poss(u′), plan(T, a).
26. holds(u′, p) :- not causes(a, p), holds(u, p), poss(u), poss(u′), plan(T, a).

27. believes(u′, v, ag) :- believes(u, v, ag), oblivious(ag, a), poss({u, u′, v}).
28. believes(u′, v′, ag) :- believes(u, v, ag), fully obs(ag, a), poss({u, u′, v, v′}).

Where p can be either f or ¬f.

Proposition 3 (PLATO ontic actions correctness w.r.t. mAρ). Given a domain D, the set
of its belief formulae D(BF), an ontic action a ∈ D(A) and two possibilities u, v ∈ D(S) such that
u |= ψ iff v |= ψ ∀ψ ∈ D(BF) then Φ(a, u) |= ψ iff Γ (a, v) |= ψ ∀ψ ∈ D(BF) (where Φ and Γ
represents tha transition function of mAρ and PLATO respectively).

8 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

Proof.
To prove that two possibilities generated from two different transition functions, starting from equal
possibilities, entail the same formulae we need to demonstrate that the updated possibilities have
the same structural properties. To show this we will identify each Rule of Definition 8 with Predi-
cates of Definition 9.

• Rule H corresponds to Predicates 25 and 26 .

H . u′(f) =

{
1 if f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

0 if ¬f ∈ (u(F) \ e(a, u)) ∪ e(a, u)

25 . holds(u′, `) :- causes(a, `), poss(u), poss(u′), plan(T, a).
26 . holds(u′, p) :- not causes(a, p), holds(u, p), poss(u), poss(u′), plan(T, a).

Let us start by showing that the updated possibilities u′ and v′, generated from Φ(a, u) and Γ (a, v)
respectively, are equal w.r.t. the fluents truth value. Let us consider the case when the action a
causes f; in this scenario u′(f) is equal to 1 (Equation H) and holds(v′, f) is valid (Predicate 25)
meaning that both u′ and v′ consider f to be true.
Similarly when the action a causes ¬f we will have that u′(f) is equal to 0 (Equation H) while
the predicate holds(v′, ¬f) is true (Predicate 25) causing f to be false in u′ and v′.
Finally we need to show that the fluents that are not modified by the action have the same truth
value both in u′ and v′. This is easily derived in mAρ as in Equation H the fluents modified
are only the ones that belongs to the set e(a, u)—namely the effects of a—while the other are
preserved from u(F). On the other hand, in PLATO, this is accomplished with Predicate 26 that
explicitly sets every fluent that is not an effect of a as it was in v. Given that we assumed u and
v to entail the same formulae, and therefore to have the same truth value for fluents, we can
conclude that also the fluents not directly modified by a have the same value in u′ and v′.

• After the fluents truth value we need to demonstrate that the beliefs update is the same in both
mAρ and PLATO.
− Let us start with the beliefs related to the oblivious agents. The first case of Rule I (Rule I 1)

corresponds to Predicate 27 .

I 1. u′(ag) = u(ag) if ag ∈ Oa

27 . believes(u′, v, ag) :- believes(u, v, ag), oblivious(ag, a), poss({u, u′, v}).
As described in Rule I 1 an oblivious agent ag, from u′, believes the same set of possibilities
Uag that she believed in u. In PLATO the behavior of an oblivious agent ag is described by
Predicate 27 that creates a predicate believes from v′ to each possibility that belongs to the
set Vag of possibilities believed by ag in v. Given that, by definition, u and v must entail the
same formulae we have that the sets of possibilities believed by an agent starting from u and
v must be equals. In particular this means that the sets Uag and Vag are the same set and,
therefore, an oblivious agent’s beliefs are the same starting from u′ or v′.

− Next we will demonstrate that the beliefs of fully observant agents are equals in u′ and v′. The
second case of Rule I (Rule I 2) corresponds to Predicate 28 .

Modelling MEP in ASP: Supplementary Documentation 9

I 2. u′(ag) =
⋃

w∈u(ag)
Φ(a,w) if ag ∈ Fa

28 . believes(u′, v′, ag) :- believes(u, v, ag), fully obs(ag, a), poss({u, u′, v, v′}).
This scenario for mAρ is described in Rule I 2 where it is shown how a fully observant agent
ag, starting from u′, believes the updated version of the possibilities that she believed starting
from u. The same holds for PLATO where Predicate 28 creates a predicate believes from v′

to every updated version of the possibility belived by ag in v. This means that a fully observant
agent, that necessarily believes the same set Pag of possibilities starting from u and v, believes
the updated version of Pag starting from u′ and v′. As shown in the other points the result
of both the transition functions on a possibility p is the same possibility p′ and therefore the
updated version of Pag is equal in both mAρ and PLATO.

A.4.2 Sensing actions correctness
Let a domain D, its set of action instances D(AI), and the set D(S) of all the e-states reachable
from D(ϕi) with a finite sequence of action instances be given. The transition function Φ : D(AI)×
D(S)→ D(S) ∪ {∅} for sensing actions is defined as follows:

Definition 10 (mAρ sensing actions transition function). Let a sensing action instance a
∈ D(AI) used to determine the fluent f, a possibility u ∈ D(S) and an agent ag ∈ D(AG) be given.
If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) ={f | (a determines f) ∈ D ∧ u |= f}
∪{¬f | (a determines f) ∈ D ∧ u 6|= f}

u′(F) = u(F)J.

u′(ag) =

u(ag) if ag ∈ Oa⋃
w∈u(ag)

Φ(a,w) if ag ∈ Pa⋃
w∈u(ag): e(a,w)=e(a,u)

Φ(a,w) if ag ∈ Fa

K.

Definition 11 (PLATO sensing actions transition function). Let an executable sensing action
instance a ∈ D(AI) s.t. a determines f, the possibilities u,v ∈ D(S), the possibility pointedu ∈ D(S)
s.t. pointedu represents the pointed possibility before calculating Γ (a, u) and an agent ag ∈ D(AG)
be given. The transition function for a in PLATO is defined as follows:

23. :- plan(T, a), not executable(T, a).

29. poss(u′) :- plan(T, a), poss(u), reach fully(pointedu, u), entails(u, p), entails(pointedu, p).
30. poss(u′) :- plan(T, a), poss(u), believes(pointedu, u, ag), partial obs(ag, a).
31. poss(u′) :- plan(T, a), poss({u,v}), believes(pointedu, v, ag), partial obs(ag, a),

reach not oblivious(v, u).

32. holds(u′, p) :- plan(T, a), poss(u), poss(u′), holds(u, p).

33. believes(u′, v, ag) :- believes(u, v, ag), oblivious(ag, a), poss({u, u′, v}).

10 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

34. believes(u′, v′, ag) :- believes(u, v, ag), partial obs(ag, a), poss({u, u′, v, v′}).
35. believes(u′, v′, ag) :- believes(u, v, ag), fully obs(ag, a), holds({u, v}, p), poss({u, u′, v, v′}).

Where p can be either f or ¬f.

Proposition 4 (PLATO sensing actions correctness w.r.t. mAρ). Given a domain D, the
set of its belief formulae D(BF), an sensing action a ∈ D(A) and two possibilities u, v ∈ D(S) such
that u |= ψ iff v |= ψ ∀ψ ∈ D(BF) then Φ(a, u) |= ψ iff Γ (a, v) |= ψ ∀ψ ∈ D(BF) (where Φ and Γ
represents tha transition function of mAρ and PLATO respectively).

Proof.
To prove that two possibilities generated from two different transition functions, starting from equal
possibilities, entail the same formulae we need to demonstrate that the updated possibilities have
the same structural properties. To show this we will identify each Rule of Definition 10 with Pred-
icates of Definition 11.

• Rule J corresponds to Predicates 32 .

J . u′(F) = u(F)

32 . holds(u′, p) :- plan(T, a), poss(u), poss(u′), holds(u, p).

Let us start by showing that the updated possibilities u′ and v′, generated from Φ(a, u) and
Γ (a, v) respectively, are equal w.r.t. the fluents truth value. This is easily derived: in fact in mAρ
(Equation J) the fluents interpretation in u′ is the equal to the fluents interpretation of u and in
PLATO the predicates holds are valid on the same fluents interpretation in both v and v′ (Pred-
icate 32). Given that we assumed u and v to entail the same formulae, and therefore to have the
same truth value for fluents, we can conclude that also the fluents have the same value in u′ and v′.

• After the fluents truth value we need to demonstrate that the beliefs update is the same in both
mAρ and PLATO.
− Let us start with the beliefs related to the oblivious agents. The first case of Rule K (Rule K 1)

corresponds to Predicate 33 .

K 1. u′(ag) = u(ag) if ag ∈ Oa

33 . believes(u′, v, ag) :- believes(u, v, ag), oblivious(ag, a), poss({u, u′, v}).
As for the ontic actions an oblivious agent ag, from u′, believes the same set of possibilities
Uag that she believed in u (Rule K 1) and in PLATO ag believes, from v′, the set Vag of
possibilities believed by ag in v (Predicate 33). Given that, by definition, u and v must entail
the same formulae we have that the sets of possibilities believed by an agent starting from u
and v must be equals. In particular this means that the sets Uag and Vag are the same set and,
therefore, an oblivious agent’s beliefs are the same starting from u′ or v′.

− Next we need to show that the partially observant agents’ beliefs are equals in u′ and v′. The
second case of Rule K (Rule K 2) corresponds to Predicate 34 .

K 2. u′(ag) =
⋃

w∈u(ag)
Φ(a,w) if ag ∈ Pa

Modelling MEP in ASP: Supplementary Documentation 11

34 . believes(u′, v′, ag) :- believes(u, v, ag), partial obs(ag, a), poss({u, u′, v, v′}).
This scenario for mAρ is described by Rule K 2 where it is shown how a partially observant
agent ag, starting from u′, beliefs the updated version of the possibilities that she believed
starting from u. The same holds for PLATO where Predicate 34 creates a predicate believes

from v′ to every updated version of the possibility belived by ag in v. This means that a
partially observant agent, that necessarily believes the same set Pag of possibilities starting
from u and v, believes the updated version of Pag starting from u′ and v′. As shown in the
other points the result of both the transition functions on a possibility p is the same possibility
p′ and therefore the updated version of Pag is equal in both mAρ and PLATO.

− Finally we need to demonstrate that also the beliefs of the fully observant agents are equals
in u′ and v′. The third case of Rule K (Rule K 3) corresponds to Predicate 35 .

K 3. u′(ag) =
⋃

w∈u(ag): e(a,w)=e(a,u)
Φ(a,w) if ag ∈ Fa

29 . poss(u′) :- plan(T, a), poss(u), reach fully(pointedu, u), entails(u, φ), entails(pointedu, φ).
30 . poss(u′) :- plan(T, a), poss(u), believes(pointedu, u, ag), partial obs(ag, a).
31 . poss(u′) :- plan(T, a), poss({u,v}), believes(pointedu, v, ag), partial obs(ag, a),

reach not oblivious(v, u).

35 . believes(u′, v′, ag) :- believes(u, v, ag), fully obs(ag, a), holds({u, v}, p),
poss({u, u′, v, v′}).

Given that Φ(a, u) is assumed to be applied starting from the pointed world we have that a
fully observant agent, starting from the pointed possibility, only believes possibilities where f
has the same truth value that has in the pointed one. This case is matched exactly in PLATO
by the combination of Predicates 29 and 35 . On the other hand, if a world is reached by a fully
observant agent not directly from the pointed world—i.e., it is reached by a fully observant
through a path of partially and fully observant agents that starts with a partially observant
one—its updated version will only have fully observant edges to the updated possibilities with
the same interpretation of f. This is because the Rule K 2 is firstly applied and finally (possibly
after other applications of Rule K) Rule K 3 is used. In fact, by applying Rule K 2 first, Φ is
recursively applied on both possibilities that have and do not have the same interpretation of
f w.r.t. the pointed world. it is straightforward to see that this rule is transposed in PLATO
trough the combination of Predicates 31 and 35 .

A.4.3 Announcements actions correctness
Let a domain D, its set of action instances D(AI), and the set D(S) of all the e-states reachable
from D(ϕi) with a finite sequence of action instances be given. The transition function Φ : D(AI)×
D(S)→ D(S) ∪ {∅} for announcement actions is defined as follows.

Definition 12 (mAρ announcement actions transition function). Let an announcement ac-
tion instance a ∈ D(AI) used to announce the fluent formula φ, a possibility u ∈ D(S) and an
agent ag ∈ D(AG) be given.
If a is not executable in u, then Φ(a, u) = ∅ otherwise Φ(a, u) = u′, where:

e(a, u) =

{
0 if u |= φ

1 if u |= ¬φ

12 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

u′(F) = u(F)L.

u′(ag) =

u(ag) if ag ∈ Oa⋃
w∈u(ag)

Φ(a,w) if ag ∈ Pa⋃
w∈u(ag): e(a,w)=e(a,u)

Φ(a,w) if ag ∈ Fa

M.

Definition 13 (PLATO announcement actions transition function). Let an executable an-
nouncement action instance a ∈ D(AI) s.t. a announces φ, the possibilities u,v ∈ D(S), the possi-
bility pointedu ∈ D(S) s.t. pointedu represents the pointed possibility before calculating Γ (a, u) and
an agent ag ∈ D(AG) be given. The transition function for a in PLATO is defined as follows:

23. :- plan(T, a), not executable(T, a).

36. poss(u′) :- plan(T, a), poss(u), reach fully(pointedu, u), entails(u, φ), entails(pointedu, φ).
37. poss(u′) :- plan(T, a), poss(u), believes(pointedu, u, ag), partial obs(ag, a).
38. poss(u′) :- plan(T, a), poss({u,v}), believes(pointedu, v, ag), partial obs(ag, a),

reach not oblivious(v, u).

39. holds(u′, p) :- plan(T, a), poss(u), poss(u′), holds(u, p).

40. believes(u′, v, ag) :- believes(u, v, ag), oblivious(ag, a), poss({u, u′, v}).
41. believes(u′, v′, ag) :- believes(u, v, ag), partial obs(ag, a), poss({u, u′, v, v′}).
42. believes(u′, v′, ag) :- believes(u, v, ag), fully obs(ag, a), holds({u, v}, p), poss({u, u′, v, v′}).

Where p can be either f or ¬f.

Proposition 5 (PLATO announcement actions correctness w.r.t. mAρ). Given a domain
D, the set of its belief formulae D(BF), an announcement action a ∈ D(A) and two possibilities
u, v ∈ D(S) such that u |= ψ iff v |= ψ ∀ψ ∈ D(BF) then Φ(a, u) |= ψ iff Γ (a, v) |= ψ ∀ψ ∈ D(BF)
(where Φ and Γ represents tha transition function of mAρ and PLATO respectively).

Proof.
To prove that two possibilities generated from two different transition functions, starting from equal
possibilities, entail the same formulae we need to demonstrate that the updated possibilities have
the same structural properties. To show this we will identify each Rule of Definition 12 with Pred-
icates of Definition 13.

• Rule L corresponds to Predicates 39 .

L. u′(F) = u(F)

39 . holds(u′, p) :- plan(T, a), poss(u), poss(u′), holds(u, p).

Let us start by showing that the updated possibilities u′ and v′, generated from Φ(a, u) and
Γ (a, v) respectively, are equal w.r.t. the fluents truth value. This is easily derived: in fact in mAρ
(Equation L) the fluents interpretation in u′ is the equal to the fluents interpretation of u and in
PLATO the predicates holds are valid on the same fluents interpretation in both v and v′ (Pred-
icate 39). Given that we assumed u and v to entail the same formulae, and therefore to have the
same truth value for fluents, we can conclude that also the fluents have the same value in u′ and v′.

Modelling MEP in ASP: Supplementary Documentation 13

• After the fluents truth value we need to demonstrate that the beliefs update is the same in both
mAρ and PLATO.
− Let us start with the beliefs related to the oblivious agents. The first case of Rule M (Rule M 1)

corresponds to Predicate 40 .

M 1. u′(ag) = u(ag) if ag ∈ Oa

40 . believes(u′, v, ag) :- believes(u, v, ag), oblivious(ag, a), poss({u, u′, v}).

As for the ontic actions an oblivious agent ag, from u′, believes the same set of possibilities
Uag that she believed in u (Rule M 1) and in PLATO ag believes, from v′, the set Vag of
possibilities believed by ag in v (Predicate 40). Given that, by definition, u and v must entail
the same formulae we have that the sets of possibilities believed by an agent starting from u
and v must be equals. In particular this means that the sets Uag and Vag are the same set and,
therefore, an oblivious agent’s beliefs are the same starting from u′ or v′.

− Next we need to show that the partially observant agents’ beliefs are equals in u′ and v′. The
second case of Rule M (Rule M 2) corresponds to Predicate 41 .

M 2. u′(ag) =
⋃

w∈u(ag)
Φ(a,w) if ag ∈ Pa

41 . believes(u′, v′, ag) :- believes(u, v, ag), partial obs(ag, a), poss({u, u′, v, v′}).

This scenario for mAρ is described by Rule M 2 where it is shown how a partially observant
agent ag, starting from u′, beliefs the updated version of the possibilities that she believed
starting from u. The same holds for PLATO where Predicate 41 creates a predicate believes

from v′ to every updated version of the possibility belived by ag in v. This means that a
partially observant agent, that necessarily believes the same set Pag of possibilities starting
from u and v, believes the updated version of Pag starting from u′ and v′. As shown in the
other points the result of both the transition functions on a possibility p is the same possibility
p′ and therefore the updated version of Pag is equal in both mAρ and PLATO.

− Finally we need to demonstrate that also the beliefs of the fully observant agents are equals
in u′ and v′. The third case of Rule M (Rule M 3) corresponds to Predicate 42 .

M 3. u′(ag) =
⋃

w∈u(ag): e(a,w)=e(a,u)
Φ(a,w) if ag ∈ Fa

36 . poss(u′) :- plan(T, a), poss(u), reach fully(pointedu, u), entails(u, φ), entails(pointedu, φ).
37 . poss(u′) :- plan(T, a), poss(u), believes(pointedu, u, ag), partial obs(ag, a).
38 . poss(u′) :- plan(T, a), poss({u,v}), believes(pointedu, v, ag), partial obs(ag, a),

reach not oblivious(v, u).

42 . believes(u′, v′, ag) :- believes(u, v, ag), fully obs(ag, a), holds({u, v}, p),
poss({u, u′, v, v′}).

Given that Φ(a, u) is assumed to be applied starting from the pointed world we have that a
fully observant agent, starting from the pointed possibility, only believes possibilities where φ
has the same truth value that has in the pointed one. This case is matched exactly in PLATO
by the combination of Predicates 36 and 42 . On the other hand, if a world is reached by a fully
observant agent not directly from the pointed world—i.e., it is reached by a fully observant

14 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

through a path of partially and fully observant agents that starts with a partially observant
one—its updated version will only have fully observant edges to the updated possibilities with
the same interpretation of φ. This is because the Rule M 2 is firstly applied and finally (possibly
after other applications of Rule M) Rule M 3 is used. In fact, by applying Rule M 2 first, Φ is
recursively applied on both possibilities that have and do not have the same interpretation of
φ w.r.t. the pointed world. It is straightforward to see that this rule is transposed in PLATO
trough the combination of Predicates 38 and 42 .

B From Kripke Structures to Possibilities

In this section we try to briefly summarize the ideas behind the introduction of possibilities as
epistemic state. The content of this section is mostly derived from Fabiano et al. (2019, 2020) that,
in turn, were strongly influenced by Gerbrandy and Groeneveld (1997). For a more informative
introduction the reader is addressed to Gerbrandy and Groeneveld (1997); Gerbrandy (1999); Aczel
(1988); Barwise and Etchemendy (1987).

B.1 Non-well-founded set theory fundamentals

Let us start by giving some fundamental definitions of non-well-founded set theory. First of all a
well-founded set is described in Aczel (1988) as follows:

Definition 14 (well-founded set). Let E be a set, E′ one of its elements, E′′ any element of E′,
and so on. A descent is the sequence of steps from E to E′, E′ to E′′, etc. . . . A set is well-founded
(or ordinary) when it only gives rise to finite descents.

Well-founded set theory states that all the sets in the sense of Definition 14 can be represented in
the form of graphs, called pictures, (as shown in Figure 1). To formalize this concept of ‘picture of
a set’ however it is necessary to introduce the concept of decoration:

Definition 15 (Decoration and Picture).

– A decoration of a graph G=(V,E) is a function δ that assigns to each node n ∈ V a set δn
in such a way that the elements of δn are exactly the sets assigned to successors of n, i.e.,
δn = {δn′ | (n, n′) ∈ E}.

0 1 2 3

(a) Pictures of von Neumann ordinals where 0 = ∅;
1 = {∅}; 2 = {∅, {∅}}; 3 = {∅, {∅}, {∅, {∅}}}.

3

2

1

210

0

(b) Alternative Pictures of von
Neumann ordinals 2 and 3.

Figure 1: Well-founded sets represented through graphs Aczel (1988).

Modelling MEP in ASP: Supplementary Documentation 15

– If δ is a decoration of a pointed graph (G, n), then (G, n) is a picture of the set δn.

Moreover, in well-founded set theory, it holds the Mostovski’s lemma: “each well-founded graph3 is
a picture of exactly one set”.

On the other hand in Aczel (1988) a non-well-founded, or extraordinary set in the sense of
Mirimanoff, is a set that respects Definition 16.

Definition 16 (Non-well-founded set). A set is non-well-founded (or extraordinary) when
among its descents there are some which are infinite.

In fact, when the Foundation Axiom4 is substituted by the Anti-Foundation Axiom (AFA),
expressed by Aczel in Aczel (1988) as “Every graph has a unique decoration”, the following conse-
quences become true:

– Every graph is a picture of exactly one set (AFA as is formulated in Gerbrandy (1999));
– non-well-founded sets exist given that a non-well-founded pointed graph has to be a picture of

a non-well-founded set.

(a) Standard picture Ω. (b) Unfolding of the picture of Ω.

Figure 2: Representation of the non-well-founded set Ω = {Ω} Aczel (1988).

In Aczel (1988); Gerbrandy (1999) it is pointed out how non-well-founded sets can also be
expressed through systems of equations. This concept will help us to formalize the notion of e-state
in our action language.

A quick example of this representation can be derived by the set Ω = {Ω} (Figure 2). We can, in
fact, informally define this set by the (singleton) system of equations x = {x}. Systems of equations
and their solutions are described more formally as follows in Gerbrandy (1999):

Definition 17 (System of equations). For each class of atoms5 X a system of equation in X
is a class τ of equations x = X, where x ∈ X and X ⊆ X , such that τ contains exactly one equation
x = X for each x ∈ X . A solution to a system of equations τ is a function δ that assigns to each
x ∈ τ(X)6 a set δx such that δx = {δy | y ∈ X}, where x = X is an equation of τ . If δ is the solution
to a system of equations τ , then the set {δx | x ∈ τ(X)} is called the solution set of that system.

Since both graphs and systems of equations are representations for non-well-founded sets, it is
natural to investigate their relationships. In particular, it is interesting to point out how from a
graph G=(V,E) it is possible to construct a system of equations τ and vice versa. The nodes in

3 A well-founded graph is a graph that doesn’t contain an infinite path n → n′ → n′′ → . . . of successors.
4 Expressed in Gerbrandy (1999) as “Only well-founded graphs have decorations”.
5 Objects that are not sets and have no further set-theoretic structure.
6 τ(X) denotes the class of atoms X in which τ is described.

16 Alessandro Burigana, Francesco Fabiano, Agostino Dovier, Enrico Pontelli

G, in fact, can be the set of atoms τ(X) and, for each node v ∈ V , an equation is represented by
v = {v′ | (v, v′) ∈ E}. Since each graph has a unique decoration, each system of equations has a
unique solution. This is also true when we consider bisimilar systems of equations. In fact we can
collapse them into their minimal representation thanks to the concept of maximum bisimulation
as introduced in Dovier (2015). Bisimilar labeled graphs (or Kripke structures) have therefore a
unique solution as well since we collapse their representations into the minimal one.

B.2 Possibilities

Let us introduce the notion of possibility, as in Gerbrandy and Groeneveld (1997):

Definition 18 (Possibilities). Let AG be a set of agents and F a set of propositional variables:

– A possibility u is a function that assigns to each propositional variable f ∈ F a truth value
u(f) ∈ {0, 1} and to each agent ag ∈ AG an information state u(ag) = σ.

– An information state σ is a set of possibilities.

In PLATO this concept is used to describe an e-state of the planning problem. The intuition behind
this idea is that a possibility u is a possible interpretation of the world and of the agents’ beliefs;
in fact u(f) specifies the truth value of the fluent f in u and u(A) is the set of all the interpretations
the agent A considers possible in u.

Moreover a possibility can be pictured as a decoration of a labeled graph and therefore as a
unique solution to a system of equations for possibilities (Definition 19). A possibility represents the
solution to the minimal system of equations in which all bisimilar systems of equations are collapsed;
that is the possibilities that represent decorations of bisimilar labeled graphs are bisimilar and can
be represented by the minimal one. This shows that the class of bisimilar labeled graphs and,
therefore, of bisimilar Kripke structures, used by mA∗ as e-states, can be represented by a single
possibility.

Definition 19 (Equations for possibilities). Given a set of agents AG and a set of propositional
variables F , a system of equations for possibilities in a class of possibilities X is a set of equations
such that for each x ∈ X there exists exactly one equation of the form x(f) = i, where i ∈ {0, 1}, for
each f ∈ F , and of the form x(ag) = X, where X ⊆ X , for each ag ∈ AG.
A solution to a system of equations for possibilities is a function δ that assigns to each atom x a
possibility δx in such a way that if x(f) = i is an equation then δx(f) = i, and if x(ag) = σ is an
equation, then δx(ag) = {δy | y ∈ σ}.

C Domains Description

In this section we provide an in detail description of the benchmarks collected from the litera-
ture (Kominis and Geffner, 2015; Huang et al., 2017; Le et al., 2018; Fabiano et al., 2020) used to
test PLATO.

• Assembly Line (AL). In this problem there are two agents, each responsible for processing a dif-
ferent part of a product. Each agent can fail in processing her part and can inform the other agent
of the status of her task (action tell). Two agents decide to assemble (action act assemble)
the product or restart (action act res), depending on their knowledge about the product status.
The goal in this domain is fixed, i.e., the agents must assemble the product, but what varies is
the depth of the belief formulae used as executability conditions.

Modelling MEP in ASP: Supplementary Documentation 17

• Coin in the Box (CB). n ≥ 3 agents are in a room where in the middle there is a box containing
a coin. None of the agents know whether the coin lies heads or tails up and the box is locked.
One agent has the key to open the box (action open). Only attentive agents may be aware of
the execution of an action. If an agent is attentive, she may look inside the box (action peek) to
sense the state of the coin. An agent may also share the result (action shout). The goals usually
consist in some agents knowing whether the coin lies heads or tails up while other agents know
that she knows or are ignorant about this.

• Collaboration and Communication (CC). In this domains n ≥ 2 agents move along a corridor
with k ≥ 2 rooms in which m ≥ 1 boxes can be located. Whenever an agent enters a room, she
can determine if a certain box is in the room. Moreover, agents can communicate information
about the boxes’ position to the another attentive agents. Initially we place the all the agents
inside room 2. The position of the boxes in initially unknown to each agent. An agent ag may
move only to adjacent rooms (actions left〈ag〉 and right〈ag〉). To verify the presence of a box
b and to communicate it to other agents, an agent can perform the actions check〈ag〉(b) and
tell〈ag〉(b, ag2), respectively.

• Grapevine (Gr). n ≥ 2 agents are located in k ≥ 2 rooms. Each agent ag knows a “secret”,
represented by the fluent s ag. An agent can move freely to an adjacent room (actions left〈ag〉
and right〈ag〉) and she can share a secret with the agents (action share〈ag〉(s)) that are in the
room with her. This domain supports different goals, from sharing secrets with other agents to
having misconceptions about agents’ beliefs.

• Selective Communication (SC). SC has n ≥ 2 agents that start in one of the k ≥ 2 rooms
in a corridor. Every agent is free to move from one room to its adjacent (actions left and
right). In only one of the rooms, an agent may acquire some information, represented by the
fluent q, by performing the action sense. Once an agent acquired such information, she may
communicate it to others with the action shout. Depending on the room in which this action is
performed, different agents observe the action. The goals usually require some agents to know
certain properties while other agents ignore them.

Bibliography

Aczel, P. (1988). Non-well-founded sets. CSLI Lecture Notes, 14.
Baral, C., Gelfond, G., Pontelli, E., and Son, T. C. (2015). An action language for multi-agent

domains: Foundations. CoRR, abs/1511.01960.
Barwise, J. and Etchemendy, J. (1987). The liar: An essay on truth and circularity. Oxford

University Press.
Dovier, A. (2015). Logic programming and bisimulation. In Vos, M. D., Eiter, T., Lierler, Y., and

Toni, F., editors, ICLP, volume 1433 of CEUR Workshop Proceedings. CEUR-WS.org.
Fabiano, F., Burigana, A., Dovier, A., and Pontelli, E. (2020). EFP 2.0: A multi-agent epistemic

solver with multiple e-state representations. In Beck, J. C., Buffet, O., Hoffmann, J., Karpas,
E., and Sohrabi, S., editors, Proceedings of the Thirtieth International Conference on Automated
Planning and Scheduling, Nancy, France, October 26-30, 2020, pages 101–109. AAAI Press.

Fabiano, F., Riouak, I., Dovier, A., and Pontelli, E. (2019). Non-well-founded set based multi-agent
epistemic action language. In Proceedings of the 34th Italian Conference on Computational Logic,
volume 2396 of CEUR Workshop Proceedings, pages 242–259, Trieste, Italy.

Fagin, R. and Halpern, J. Y. (1994). Reasoning about knowledge and probability. Journal of the
ACM (JACM), 41(2):340–367.

Gerbrandy, J. (1999). Bisimulations on planet Kripke. Inst. for Logic, Language and Computation,
Univ. van Amsterdam.

Gerbrandy, J. and Groeneveld, W. (1997). Reasoning about information change. Journal of Logic,
Language and Information, 6(2):147–169.

Huang, X., Fang, B., Wan, H., and Liu, Y. (2017). A general multi-agent epistemic planner based
on higher-order belief change. In IJCAI International Joint Conference on Artificial Intelligence,
pages 1093–1101.

Kominis, F. and Geffner, H. (2015). Beliefs in multiagent planning: From one agent to many.
In Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS,
pages 147–155.

Kominis, F. and Geffner, H. (2017). Multiagent online planning with nested beliefs and dialogue.
In Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS,
pages 186–194, Pittsburgh, Pennsylvania, USA.

Le, T., Fabiano, F., Son, T. C., and Pontelli, E. (2018). EFP and PG-EFP: Epistemic forward search
planners in multi-agent domains. In Proceedings of the Twenty-Eighth International Conference
on Automated Planning and Scheduling, pages 161–170, Delft, The Netherlands. AAAI Press.

Muise, C. J., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R., and Sonenberg, L.
(2015). Planning over multi-agent epistemic states: A classical planning approach. In Proc. of
AAAI, pages 3327–3334.

Son, T. C., Pontelli, E., Baral, C., and Gelfond, G. (2014). Finitary s5-theories. In European
Workshop on Logics in Artificial Intelligence, pages 239–252. Springer.

