DELPHIC: TOWARDS AN EFFICIENT POSSIBILITY-BASED EPISTEMIC PLANNING FRAMEWORK

Alessandro Burigana Free University of Bozen-Bolzano, Italy

Paolo Felli University of Bologna, Italy

Marco Montali Free University of Bozen-Bolzano, Italy OVERLAY 2022 November 28 Udine, Italy **Epistemic planning** is an enrichment of automated (multi-agent) planning where the concept of **knowledge/belief** is taken into account:

- Agents might do something depending on what they know
- Cooperative setting: agents want to reach a common goal
- Centralized setting: a single omniscient entity (the planner) is responsible for finding a solution

Example (Coin in the Box)

Initial situation. Anne, Bob and Carl are in the same room. A coin placed inside a closed box. Everybody knows that the box is closed (c), but no one knows the position of the coin.

There are two possible situations:

- The coin lies heads up (h), and
- The coin lies tails up $(\neg h)$.

Goals can include epistemic conditions:

- Anne knows/believes that *h*,
- Bob knows/believes that Anne knows/believes whether h or not,
- Carl knows/believes that Anne does not know/believe whether h,
- Both Bob and Carl do not know/believe whether h.

DYNAMIC EPISTEMIC LOGIC

The Language

Let \mathcal{P} be a finite set of propositional atoms and $\mathcal{AG} = \{1, \dots, n\}$ a finite set of agents.

Definition (Language $\mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}^{C}$)

$$\varphi ::= p \mid \neg \phi \mid \phi \land \phi \mid \Box_i \phi \mid C_G \phi,$$

Example (Coin in the Box)

Let $\mathcal{P} = \{c, h\}$ and $\mathcal{AG} = \{Anne, Bob, Carl\}$. We can state the conditions of our example as follows:

Initial conditions:

• $\bigwedge_{i \in \mathcal{A}\mathcal{G}} (\neg \Box_i h \land \neg \Box_i \neg h)$

■ C_{Anne,Bob,Carl}c

Goal conditions:

■ □_{Anne}h

- $\blacksquare \square_{Bob}(\square_{Anne} h \lor \square_{Anne} \neg h)$
- $\blacksquare \Box_{Carl}(\neg \Box_{Anne}h \land \neg \Box_{Anne}\neg h)$
- $\bigwedge_{i \in \{Bob, Carl\}} (\neg \Box_i h \land \neg \Box_i \neg h)$

Figure: Initial state.

Epistemic states (pointed Kripke models):

- Worlds: possible situations
- Relations: what agents consider to be possible
- Valuation: what is considered to be true in each world
- Designated worlds: actual situations

Figure: Initial state.

Epistemic states (pointed Kripke models):

- Worlds: possible situations
- Relations: what agents consider to be possible
- Valuation: what is considered to be true in each world
- Designated worlds: actual situations

Definition (Truth)

$$\begin{array}{ll} (M,w) \models p & \text{iff} & w \in V(p) \\ (M,w) \models \neg \phi & \text{iff} & (M,w) \not\models \phi \\ (M,w) \models \phi \land \psi & \text{iff} & (M,w) \models \phi \text{ and } (M,w) \models \psi \\ (M,w) \models \Box_i \phi & \text{iff} & \forall v \text{ if } wR_i v \text{ then } (M,v) \models \phi \\ (M,w) \models C_G \phi & \text{iff} & \forall v \text{ if } wR_G^* v \text{ then } (M,v) \models \phi \end{array}$$

Figure: Anne opens the box while only Bob is looking (Carl is distracted).

Actions (pointed event models):

- Events: what might happen relatively to some agents' perspective
- Relations: akin to those of epistemic models
- Preconditions: what is needed for an event to occur
- Postconditions: how an event changes a world
- Designated events: what actually happens

Product update:

Product update:

$$(w_1, e_2): h, c$$
 $(w_2, e_2): c$

Product update:

Notice that w_1 (resp., w_2) and (w_1, e_2) (resp., (w_2, e_2)) encode the same information, but they are distinct objects!

DELPHIC

DEL-planning with a Possibility-based Homogeneous Information Characterisation:

- Epistemic models represented by possibilities
- Event models represented by eventualities
- New semantics for actions: union update

A **possibility** u is a function that assigns to each atom $p \in \mathcal{P}$ a truth value $u(p) \in \{0, 1\}$ and to each agent $i \in A\mathcal{G}$ a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set $U = \{u_1, \dots, u_k\}$ of designated possibilities.

A **possibility** u is a function that assigns to each atom $p \in \mathcal{P}$ a truth value $u(p) \in \{0, 1\}$ and to each agent $i \in A\mathcal{G}$ a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set $U = \{u_1, \dots, u_k\}$ of designated possibilities.

Intuitively:

- u(p) specifies the truth value of the atom p (plays the role of the valuation function)
- u(i) is the set of all the worlds that agent i considers possible in u (plays the role of the accessibility relations)
- A possibility spectrum plays the role of the designated worlds

A **possibility** u is a function that assigns to each atom $p \in \mathcal{P}$ a truth value $u(p) \in \{0, 1\}$ and to each agent $i \in \mathcal{AG}$ a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set $U = \{u_1, \ldots, u_k\}$ of designated possibilities.

$$U = \{w_1\}$$
, where:

A **possibility** u is a function that assigns to each atom $p \in \mathcal{P}$ a truth value $u(p) \in \{0, 1\}$ and to each agent $i \in \mathcal{AG}$ a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set $U = \{u_1, \dots, u_k\}$ of designated possibilities.

Example

 $U = \{w_1\}, \text{ where:}$ $w_1(h) = w_1(c) = 1$ $w_1(A) = w_1(B) = w_1(C) = \{w_1, w_2\}$

A **possibility** u is a function that assigns to each atom $p \in \mathcal{P}$ a truth value $u(p) \in \{0, 1\}$ and to each agent $i \in A\mathcal{G}$ a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set $U = \{u_1, \dots, u_k\}$ of designated possibilities.

Example

 $U = \{w_1\}, \text{ where:}$ $w_1(h) = w_1(c) = 1$ $w_1(A) = w_1(B) = w_1(C) = \{w_1, w_2\}$ $w_2(h) = 0 \text{ and } w_2(c) = 1$ $w_2(A) = w_2(B) = w_2(C) = \{w_1, w_2\}$

A **possibility** u is a function that assigns to each atom $p \in \mathcal{P}$ a truth value $u(p) \in \{0, 1\}$ and to each agent $i \in \mathcal{AG}$ a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set $U = \{u_1, \ldots, u_k\}$ of designated possibilities.

Definition (Truth)

$$u \models p \quad \text{iff} \quad u(p) = 1$$

$$u \models \neg \varphi \quad \text{iff} \quad u \not\models \varphi$$

$$u \models \varphi \land \psi \quad \text{iff} \quad u \models \varphi \text{ and } u \models \psi$$

$$u \models \Box_i \varphi \quad \text{iff} \quad \forall v \text{ if } v \in u(i) \text{ then } v \models \varphi$$

$$u \models C_G \varphi \quad \text{iff} \quad \forall v \text{ if } v \in u^*(G) \text{ then } v \models \varphi$$

Finally, $U \models \phi$ iff $v \models \phi$, for all $v \in U$.

Let $pre \notin \mathcal{P}$ be a fresh atom and let $\mathcal{P}' = \mathcal{P} \cup \{pre\}$.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom $p' \in \mathcal{P}'$ a formula $e(p') \in \mathcal{L}^{C}_{\mathcal{P},\mathcal{A}\mathcal{G}}$ and to each agent $i \in \mathcal{A}\mathcal{G}$ a set of eventualities e(i).

Definition (Eventuality spectrum)

An **eventuality spectrum** is a finite set $E = \{e_1, \dots, e_k\}$ of designated eventualities.

Let $pre \notin \mathcal{P}$ be a fresh atom and let $\mathcal{P}' = \mathcal{P} \cup \{pre\}$.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom $p' \in \mathcal{P}'$ a formula $e(p') \in \mathcal{L}^{C}_{\mathcal{P},\mathcal{A}\mathcal{G}}$ and to each agent $i \in \mathcal{A}\mathcal{G}$ a set of eventualities e(i).

Definition (Eventuality spectrum)

An **eventuality spectrum** is a finite set $E = \{e_1, \dots, e_k\}$ of designated eventualities.

Intuitively:

- e(*pre*) specifies precondition of e
- e(p) specifies postcondition of p in e
- e(i) is the set of all the eventualities that agent i considers possible in e (plays the role of the accessibility relations)
- An eventuality spectrum plays the role of the designated worlds

Let $pre \notin \mathcal{P}$ be a fresh atom and let $\mathcal{P}' = \mathcal{P} \cup \{pre\}$.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom $p' \in \mathcal{P}'$ a formula $e(p') \in \mathcal{L}_{\mathcal{P},\mathcal{AG}}^{\mathcal{C}}$ and to each agent $i \in \mathcal{AG}$ a set of eventualities e(i).

Definition (Eventuality spectrum)

An **eventuality spectrum** is a finite set $E = \{e_1, \dots, e_k\}$ of designated eventualities.

$$E = \{e_1\}, where:$$

Let $pre \notin \mathcal{P}$ be a fresh atom and let $\mathcal{P}' = \mathcal{P} \cup \{pre\}$.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom $p' \in \mathcal{P}'$ a formula $e(p') \in \mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}^{\mathsf{C}}$ and to each agent $i \in \mathcal{A}\mathcal{G}$ a set of eventualities e(i).

Definition (Eventuality spectrum)

An **eventuality spectrum** is a finite set $E = \{e_1, \dots, e_k\}$ of designated eventualities.

$$E = \{e_1\}, \text{ where:}$$

$$e_1(pre) = c, e_1(h) = h \text{ and } e_1(c) = \bot$$

$$e_1(A) = e_1(B) = \{e_1\} \text{ and } e_1(C) = \{e_2\}$$

Let $pre \notin \mathcal{P}$ be a fresh atom and let $\mathcal{P}' = \mathcal{P} \cup \{pre\}$.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom $p' \in \mathcal{P}'$ a formula $e(p') \in \mathcal{L}_{\mathcal{P},\mathcal{AG}}^{C}$ and to each agent $i \in \mathcal{AG}$ a set of eventualities e(i).

Definition (Eventuality spectrum)

An **eventuality spectrum** is a finite set $E = \{e_1, \dots, e_k\}$ of designated eventualities.

$$E = \{e_1\}, where:$$

•
$$e_1(pre) = c$$
, $e_1(h) = h$ and $e_1(c) = \bot$

•
$$e_1(A) = e_1(B) = \{e_1\} \text{ and } e_1(C) = \{e_2\}$$

•
$$e_2(pre) = \top$$
, $e_2(h) = h$ and $e_2(c) = c$

$$e_2(A) = e_2(B) = e_2(C) = \{e_2\}$$
 7/13

Definition (Union Update)

The **union update** of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

- **u**'(p) = 1 iff **u** \models **e**(p)
- $u'(i) = \{v \otimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The **union update** of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

Definition (Union Update)

The union update of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

•
$$u'(p) = 1$$
 iff $u \models e(p)$

• $u'(i) = \{v \boxtimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

$$\mathsf{U} \boxtimes \mathsf{E} = \{\mathsf{w}_1 \boxtimes \mathsf{e}_1\} = \{\mathsf{w}_1^1\}, \text{ where:}$$

Definition (Union Update)

The union update of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

•
$$u'(p) = 1$$
 iff $u \models e(p)$

• $u'(i) = \{v \boxtimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

$$\begin{split} U &\otimes \mathsf{E} = \{\mathsf{w}_1 \otimes \mathsf{e}_1\} = \{\mathsf{w}_1^1\}, \text{ where:} \\ &= \mathsf{w}_1^1(c) = 0 \text{ and } \mathsf{w}_1^1(h) = 1 \\ &= \mathsf{w}_1^1(A) = \mathsf{w}_1^1(B) = \{\mathsf{w}_1 \otimes \mathsf{e}_1, \mathsf{w}_2 \otimes \mathsf{e}_1\} \text{ and } \mathsf{w}_1^1(C) = \{\mathsf{w}_1 \otimes \mathsf{e}_2, \mathsf{w}_2 \otimes \mathsf{e}_2\} \end{split}$$

Definition (Union Update)

The union update of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

•
$$u'(p) = 1$$
 iff $u \models e(p)$

• $u'(i) = \{v \boxtimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

$$\begin{aligned} \mathsf{J} & \boxtimes \mathsf{E} = \{\mathsf{w}_1 \boxtimes \mathsf{e}_1\} = \{\mathsf{w}_1^1\}, \text{ where:} \\ & = \mathsf{w}_1^1(c) = 0 \text{ and } \mathsf{w}_1^1(h) = 1 \\ & = \mathsf{w}_1^1(A) = \mathsf{w}_1^1(B) = \{\mathsf{w}_1^1, \mathsf{w}_2^1\} \text{ and } \mathsf{w}_1^1(C) = \{\mathsf{w}_1^2, \mathsf{w}_2^2\} \end{aligned}$$

Definition (Union Update)

The union update of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

•
$$u'(p) = 1$$
 iff $u \models e(p)$

• $u'(i) = \{v \boxtimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

$$J \boxtimes E = \{w_1 \boxtimes e_1\} = \{w_1^1\}, \text{ where:}$$

$$w_1^1(c) = 0 \text{ and } w_1^1(h) = 1$$

$$w_1^1(A) = w_1^1(B) = \{w_1^1, w_2^1\} \text{ and } w_1^1(C) = \{w_1^2, w_2^2\}$$

$$w_2^1(c) = 0 \text{ and } w_2^1(h) = 0$$

$$w_2^1(A) = w_2^1(B) = \{w_1 \boxtimes e_1, w_2 \boxtimes e_1\} \text{ and } w_2^1(C) = \{w_1 \boxtimes e_2, w_2 \boxtimes e_2\}$$

Definition (Union Update)

The union update of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

•
$$u'(p) = 1$$
 iff $u \models e(p)$

• $u'(i) = \{v \boxtimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

$$J \boxtimes E = \{w_1 \boxtimes e_1\} = \{w_1^1\}, \text{ where:}$$

$$= w_1^1(c) = 0 \text{ and } w_1^1(h) = 1$$

$$= w_1^1(A) = w_1^1(B) = \{w_1^1, w_2^1\} \text{ and } w_1^1(C) = \{w_1^2, w_2^2\}$$

$$= w_2^1(c) = 0 \text{ and } w_2^1(h) = 0$$

$$= w_2^1(A) = w_2^1(B) = \{w_1^1, w_2^1\} \text{ and } w_2^1(C) = \{w_1^2, w_2^2\}$$

Definition (Union Update)

The union update of a possibility u with an eventuality e is the possibility $u' = u \boxtimes e$, such that if $u \not\models e(pre)$, then $u' = \emptyset$; otherwise:

•
$$u'(p) = 1$$
 iff $u \models e(p)$

• $u'(i) = \{v \boxtimes f \mid v \in u(i), f \in e(i) \text{ and } v \models f(pre)\}$

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum $U \boxtimes E = \{u \boxtimes e \mid u \in U, e \in E \text{ and } u \models e(pre)\}.$

$$J \boxtimes E = \{w_1 \boxtimes e_1\} = \{w_1^1\}, \text{ where:}$$

$$= w_1^1(c) = 0 \text{ and } w_1^1(h) = 1$$

$$= w_1^1(A) = w_1^1(B) = \{w_1^1, w_2^1\} \text{ and } w_1^1(C) = \{w_1^2, w_2^2\}$$

$$= w_2^1(c) = 0 \text{ and } w_2^1(h) = 0$$

$$= w_2^1(A) = w_2^1(B) = \{w_1^1, w_2^1\} \text{ and } w_2^1(C) = \{w_1^2, w_2^2\}$$

$$= w_1^2 = w_1 \text{ and } w_2^2 = w_2 \text{ (we can reuse old information!)}$$

8/13

DISCUSSION

DELPHIC overcomes some Shortcomings of DEL:

- Does not reuse old information (as shown before)
- Blind cross-product: may result into unreachable information
 - \rightarrow World (w_2 , e_2) is redundant: it is not reachable from a designated world

DELPHIC overcomes some Shortcomings of DEL:

- Does not reuse old information (as shown before)
- Blind cross-product: may result into unreachable information
 - \rightarrow World (w_2 , e_2) is redundant: it is not reachable from a designated world

Example

$$A, B \qquad A, B \qquad A = 0$$

Let $U = \{w_1\}$ and $E = \{e_1, e_2\}$, where: • $w_1(p)=1$ and $w_1(A)=w_1(B)=\{w_1, w_2\}$ • $w_2(p)=0$ and $w_2(A)=w_2(B)=\{w_1, w_2\}$

e₁(pre)= p, e₁(p)=p and e₁(A)=e₁(B)={e₁}
 e₂(pre)=¬p, e₂(p)=p and e₂(A)=e₂(B)={e₂}

DELPHIC overcomes some Shortcomings of DEL:

- Does not reuse old information (as shown before)
- Blind cross-product: may result into unreachable information
 - \rightarrow World (w_2 , e_2) is redundant: it is not reachable from a designated world

Example

A, B
 A, B

$$W_1 : p$$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_1 : (w_1, e_1) : p$
 $W_2, e_2 : \neg p$
 $W_1 : p$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_1 : (w_1, e_1) : p$
 $W_2, e_2 : \neg p$
 $W_1 : p$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_1 : (w_1, e_1) : p$
 $W_2, e_2 : \neg p$
 $W_1 : p$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_1 : (w_1, e_1) : p$
 $W_2, e_2 : \neg p$
 $W_1 : p$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_1 : e_1 : \langle p, id \rangle$
 $W_1 : e_1 : p$
 $W_1 : p$
 $W_2 : \neg p$
 $W_1 : \langle p, id \rangle$
 $W_1 : e_1 : p$
 $W_2, e_2 : \neg p$
 $W_1 : p$
 $W_2 : \neg p$
 $W_1 : W_1 : W_2$
 $W_1 : e_1 : p$
 $W_2, e_2 : \neg p$
 $W_1 : (p) = 1$ and $W_1 : (A) = W_1 : (B) = \{W_1, W_2\}$
 $W_1 : e_1 : (pre) = p$
 $W_1 : e_1 : (p) = p$
 $W_1 : e_1 : (B) = e_1 : (B) = e_1 : [B] = e_1 : [B] = e_1 : [B] = e_2 : [B] = [B$

In DELPHIC every possibility is reachable: $U \otimes E = \{w_1 \otimes e_1\} = \{w_1\}$.

As shown by Gerbrandy [journals/jolli/Gerbrandy1997], possibilities and Kripke models are tightly related. In particular:

- To each Kripke model, we can associate a correspondent equivalent possibility (and vice versa)
 - \rightarrow We have already seen this intuitively
- We can study properties about possibilities by exploiting the extended literature on Kripke models

Moreover, the relation between possibilities and Kripke models have interesting implications in terms of implementations:

- To each Kripke model, we can associate a correspondent equivalent possibility (and vice versa)
- If two Kripke models are bisimilar, they share the same correspondent possibility
- Thus, possibilities are minimal objects (w.r.t. bisimulation)
 - $\rightarrow\,$ Possibilities allow for a more compact representation

Moreover, the relation between possibilities and Kripke models have interesting implications in terms of implementations:

- To each Kripke model, we can associate a correspondent equivalent possibility (and vice versa)
- If two Kripke models are bisimilar, they share the same correspondent possibility
- Thus, possibilities are minimal objects (w.r.t. bisimulation)
 - $\rightarrow\,$ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:

- Possibilities have already been proved to provide more efficient implementations
- Epistemic planner EFP 2.0 [conf/icaps/Fabiano2020]: relies on a framework called *m*A* [journals/corr/Baral2015], which is a fragment of DEL

In DEL, a Kripke models represents information by means of different *heterogeneous* components: worlds, accessibility relations, valuation function.

In DELPHIC, a possibility represents a whole **possible situation**: what is true in that particular situation *and* what agents consider possible.

In DEL, a Kripke models represents information by means of different *heterogeneous* components: worlds, accessibility relations, valuation function.

In DELPHIC, a possibility represents a whole **possible situation**: what is true in that particular situation *and* what agents consider possible.

- \rightarrow In short, a possibility represents a *possibility*.
- $\rightarrow\,$ Closer to how humans reason about situations

FUTURE WORKS

In the immediate future (X):

- Implement both DELPHIC and DEL to obtain empirical evidence
- Declarative encoding (ASP, Prolog, SMT, ...): transparent comparison

More in the future (F):

■ Implement DELPHIC in the solver *EFP* [conf/icaps/Fabiano2020]

THANK YOU Questions?