
THE EPISTEMIC PLANNING
DOMAIN DEFINITION LANGUAGE

Alessandro Burigana
Free University of Bozen-Bolzano, Italy

Francesco Fabiano
University of Parma, Italy

IPS 2022
November 29
Udine, Italy

1/12

Epistemic Planning

Epistemic planning is an enrichment of automated (multi-agent) planning where the concept
of knowledge/belief is taken into account:

Agents might do something depending on what they know
Cooperative setting: agents want to reach a common goal
Centralized setting: a single omniscient entity (the planner) is responsible for finding a
solution

2/12

A Simple Running Example

Example (The Letter)
Initial situation. Anne and Bob are in the
same room. Anne receives a letter form an
university she applied for. The letter states
whether she was admitted in the university
(u) or not. No one knows whether she was
admitted.

There are two possible situations:
Anne was admitted (u), and
Anne was not admitted (¬u).

Goals can include epistemic conditions:
Anne knows/believes that u,
Bob knows/believes that Anne
knows/believes whether u or not,
And so forth.

2/12

DYNAMIC EPISTEMIC LOGIC

3/12

The Language

Let P be a finite set of propositional atoms and AG = {1, . . . , n} a finite set of agents.

Definition (Language LC
P,AG)

ϕ ::= p | ¬ϕ | ϕ∧ϕ | �iϕ | CGϕ,

Example (The Letter)
Let P = {c , u} and AG = {Anne,Bob}. We can state the conditions of our example as follows:

Initial conditions:∧
i∈AG(¬�iu ∧ ¬�i¬u)

C{Anne,Bob}

∧
i∈AG(¬�iu ∧ ¬�i¬u)

Goal conditions:
�Anneu

�Bob(�Anneu ∨�Anne¬u)

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

Figure: Initial state.

⊗

Epistemic states (pointed Kripke models):
Worlds: possible situations
Relations: what agents consider to be
possible
Valuation: what is considered to be true
in each world
Designated worlds: actual situations

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

Figure: Initial state.

⊗

Epistemic states (pointed Kripke models):
Worlds: possible situations
Relations: what agents consider to be
possible
Valuation: what is considered to be true
in each world
Designated worlds: actual situations

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

⊗

e1 : 〈u, id〉 e2 : 〈¬u, id〉

B

A,B A,B

Figure: Anne opens the envelope and reads the
letter while Bob is looking. Anne is fully observant;
Bob is partially observant.

Actions (pointed event models):
Events: what might happen relatively to
some agents’ perspective
Relations: akin to those of epistemic
models
Preconditions: what is needed for an
event to occur
Postconditions: how an event changes a
world
Designated events: what actually happens

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

⊗

e1 : 〈u, id〉 e2 : 〈¬u, id〉

B

A,B A,B

Product update:

(w1, e1)

: u

(w2, e2)

B

A,B A,B

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

⊗

e1 : 〈u, id〉 e2 : 〈¬u, id〉

B

A,B A,B

Product update:

(w1, e1)

: u

(w2, e2)

B

A,B A,B

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

⊗

e1 : 〈u, id〉 e2 : 〈¬u, id〉

B

A,B A,B

Product update:

(w1, e1) : u (w2, e2)

B

A,B A,B

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

The Semantics

w1 : u w2

A,B

A,B A,B

⊗

e1 : 〈u, id〉 e2 : 〈¬u, id〉

B

A,B A,B

Product update:

(w1, e1) : u (w2, e2)

B

A,B A,B

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ
(M,w) |= CGϕ iff ∀v if wR∗Gv then (M, v) |= ϕ

4/12

EPDDL

5/12

Why EPDDL?

Main features and motivations:
Adopts standard PDDL syntax style
→ Well established language
→ Shortens the gap between classical planning and epistemic planning representations
→ Easier to understand even for researchers less familiar with DEL

Captures the entire DEL semantics
→ Each component of an event model (events, relations, preconditions, postconditions) is

captured by EPDDL
→ Unified representation of epistemic planning domains: current solvers rely on limited ad hoc

languages
→ Easier comparison between solvers

Intuitive and usable language
→ Multiple levels of abstraction (events, action types, actions)
→ Neat distinction between universal (domain, action type library) and specific (problem)

aspects

6/12

EPDDL – Problem

A problem in EPDDL contains the following elements:
Objects and agents
Initial state:

Explicit representation (worlds, relations, valuation, designated)
Finitary S5 Theory: desireable theoretical and computational properties

Goal ϕg ∈ LC
P,AG

Propositional formulae are as in PDDL
�iϕ [i]ϕ
CGϕ [G]ϕ

7/12

EPDDL – Problem (Example)

1 (define (problem p1)
2 (:domain example1)
3 (:agents Anne Bob)
4
5 (:init
6 (u)
7 [Anne Bob](and (not [Anne](u)) (not [Anne](not (u))))
8 [Anne Bob](and (not [Bob](u)) (not [Bob](not (u))))
9)

10
11 (:goal
12 [Anne](u)
13))

7/12

EPDDL – Problem (Example)

1 (define (problem p1)
2 (:domain example1)
3 (:agents Anne Bob)
4
5 (:init
6 (u)
7 [Anne Bob](and (not [Anne](u)) (not [Anne](not (u))))
8 [Anne Bob](and (not [Bob](u)) (not [Bob](not (u))))
9)

10
11 (:goal
12 [Anne](u)
13))

Initial state (lines 5-8):
u holds
Anne and Bob have common knowledge that Anne doesn’t know whether u holds
Anne and Bob have common knowledge that Bob doesn’t know whether u holds

7/12

EPDDL – Problem (Example)

1 (define (problem p1)
2 (:domain example1)
3 (:agents Anne Bob)
4
5 (:init
6 (u)
7 [Anne Bob](and (not [Anne](u)) (not [Anne](not (u))))
8 [Anne Bob](and (not [Bob](u)) (not [Bob](not (u))))
9)

10
11 (:goal
12 [Anne](u)
13))

Goal (lines 10-12):
Anne knows that u holds

8/12

EPDDL – Domain and Action Type Library

In EPDDL, the universal components are:
Types (roots of type hierarchy: objects and agents)
Predicates
Actions

:
Events: preconditions and postconditions
Action type: observability groups (e.g., Fully observant, Partially observant), accessibility
relations and designated events
Action: action type, precondition and observability conditions (Anne is Fully observant, Bob
is Partially observant)

e1 : 〈pre1, post1〉 e2 : 〈pre2, post2〉e1 e2

P

F ,P F ,P

B

A,B A,B

Universal components are jointly described by a domain and an action type library.

8/12

EPDDL – Domain and Action Type Library

In EPDDL, the universal components are:
Types (roots of type hierarchy: objects and agents)
Predicates
Actions:

Events: preconditions and postconditions

Action type: observability groups (e.g., Fully observant, Partially observant), accessibility
relations and designated events
Action: action type, precondition and observability conditions (Anne is Fully observant, Bob
is Partially observant)

e1 : 〈pre1, post1〉 e2 : 〈pre2, post2〉

e1 e2

P

F ,P F ,P

B

A,B A,B

Universal components are jointly described by a domain and an action type library.

8/12

EPDDL – Domain and Action Type Library

In EPDDL, the universal components are:
Types (roots of type hierarchy: objects and agents)
Predicates
Actions:

Events: preconditions and postconditions
Action type: observability groups (e.g., Fully observant, Partially observant), accessibility
relations and designated events

Action: action type, precondition and observability conditions (Anne is Fully observant, Bob
is Partially observant)

e1 : 〈pre1, post1〉 e2 : 〈pre2, post2〉

e1 e2

P

F ,P F ,P

B

A,B A,B

Universal components are jointly described by a domain and an action type library.

8/12

EPDDL – Domain and Action Type Library

In EPDDL, the universal components are:
Types (roots of type hierarchy: objects and agents)
Predicates
Actions:

Events: preconditions and postconditions
Action type: observability groups (e.g., Fully observant, Partially observant), accessibility
relations and designated events
Action: action type, precondition and observability conditions (Anne is Fully observant, Bob
is Partially observant)

e1 : 〈pre1, post1〉 e2 : 〈pre2, post2〉

e1 e2

P

F ,P F ,P

B

A,B A,B

Universal components are jointly described by a domain and an action type library.

8/12

EPDDL – Domain and Action Type Library

In EPDDL, the universal components are:
Types (roots of type hierarchy: objects and agents) (domain)
Predicates (domain)
Actions:

Events (action type library): preconditions and postconditions
Action type (action type library): observability groups (e.g., Fully observant, Partially
observant), accessibility relations and designated events
Action (domain): action type, precondition and observability conditions (Anne is Fully
observant, Bob is Partially observant)

e1 : 〈pre1, post1〉 e2 : 〈pre2, post2〉

e1 e2

P

F ,P F ,P

B

A,B A,B

Universal components are jointly described by a domain and an action type library.

9/12

EPDDL – Action Type Library

Since action types should not refer to specific entities of a problem, we implemented two important
design choices:

Observability groups

Generalization of accessibility relations
Each group represents the perspective of one or more agents

Parametrized events and action types

Abstract from particular predicates and agents
Parameters in EPDDL: objects, agents, formulae and postconditions (e.g., if we pass the
preconditions as parameters, we can refer to them as variables within an action type)

Action type libraries can be used transversally across different domains!

9/12

EPDDL – Action Type Library

Since action types should not refer to specific entities of a problem, we implemented two important
design choices:

Observability groups
Generalization of accessibility relations
Each group represents the perspective of one or more agents

Parametrized events and action types

Abstract from particular predicates and agents
Parameters in EPDDL: objects, agents, formulae and postconditions (e.g., if we pass the
preconditions as parameters, we can refer to them as variables within an action type)

Action type libraries can be used transversally across different domains!

9/12

EPDDL – Action Type Library

Since action types should not refer to specific entities of a problem, we implemented two important
design choices:

Observability groups
Generalization of accessibility relations
Each group represents the perspective of one or more agents

Parametrized events and action types
Abstract from particular predicates and agents
Parameters in EPDDL: objects, agents, formulae and postconditions (e.g., if we pass the
preconditions as parameters, we can refer to them as variables within an action type)

Action type libraries can be used transversally across different domains!

9/12

EPDDL – Action Type Library

Since action types should not refer to specific entities of a problem, we implemented two important
design choices:

Observability groups
Generalization of accessibility relations
Each group represents the perspective of one or more agents

Parametrized events and action types
Abstract from particular predicates and agents
Parameters in EPDDL: objects, agents, formulae and postconditions (e.g., if we pass the
preconditions as parameters, we can refer to them as variables within an action type)

Action type libraries can be used transversally across different domains!

10/12

EPDDL – Action Type Library (Example)

1 (define (library lib)
2 (:event e1
3 :parameters (?sensed - predicate)
4 :precondition (?sensed))
5
6 (:event e2
7 :parameters (?sensed - predicate)
8 :precondition (not (?sensed)))
9

10 (:action-type sensing
11 :parameters (?p - predicate)
12 :observability-groups (Fully Partially)
13 :events (e1 (?sensed :: ?p))
14 (e2 (?sensed :: ?p))
15 :relations (Fully (e1 e1) (e2 e2))
16 (Partially (e1 e1) (e2 e2)
17 (e1 e2) (e2 e1))
18 :designated (e1)
19)
20)

Events: e1 and e2

e1 : 〈?sensed, id〉 e2 : 〈¬?sensed, id〉

⇓

Action type: sensing

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

10/12

EPDDL – Action Type Library (Example)

1 (define (library lib)
2 (:event e1
3 :parameters (?sensed - predicate)
4 :precondition (?sensed))
5
6 (:event e2
7 :parameters (?sensed - predicate)
8 :precondition (not (?sensed)))
9

10 (:action-type sensing
11 :parameters (?p - predicate)
12 :observability-groups (Fully Partially)
13 :events (e1 (?sensed :: ?p))
14 (e2 (?sensed :: ?p))
15 :relations (Fully (e1 e1) (e2 e2))
16 (Partially (e1 e1) (e2 e2)
17 (e1 e2) (e2 e1))
18 :designated (e1)
19)
20)

Events: e1 and e2

e1 : 〈?sensed, id〉 e2 : 〈¬?sensed, id〉

⇓

Action type: sensing
Parameters: ?sensed :: p

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

10/12

EPDDL – Action Type Library (Example)

1 (define (library lib)
2 (:event e1
3 :parameters (?sensed - predicate)
4 :precondition (?sensed))
5
6 (:event e2
7 :parameters (?sensed - predicate)
8 :precondition (not (?sensed)))
9

10 (:action-type sensing
11 :parameters (?p - predicate)
12 :observability-groups (Fully Partially)
13 :events (e1 (?sensed :: ?p))
14 (e2 (?sensed :: ?p))
15 :relations (Fully (e1 e1) (e2 e2))
16 (Partially (e1 e1) (e2 e2)
17 (e1 e2) (e2 e1))
18 :designated (e1)
19)
20)

Events: e1 and e2

e1 : 〈?sensed, id〉 e2 : 〈¬?sensed, id〉

⇓

Action type: sensing
Relations: observability groups

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

10/12

EPDDL – Action Type Library (Example)

1 (define (library lib)
2 (:event e1
3 :parameters (?sensed - predicate)
4 :precondition (?sensed))
5
6 (:event e2
7 :parameters (?sensed - predicate)
8 :precondition (not (?sensed)))
9

10 (:action-type sensing
11 :parameters (?p - predicate)
12 :observability-groups (Fully Partially)
13 :events (e1 (?sensed :: ?p))
14 (e2 (?sensed :: ?p))
15 :relations (Fully (e1 e1) (e2 e2))
16 (Partially (e1 e1) (e2 e2)
17 (e1 e2) (e2 e1))
18 :designated (e1)
19)
20)

Events: e1 and e2

e1 : 〈?sensed, id〉 e2 : 〈¬?sensed, id〉

⇓

Action type: sensing
Designated: e1 is the designated event

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

11/12

EPDDL – Domain (Example)

1 (define (domain example1)
2 (:action-type-libraries lib)
3 (:requirements :del :typing :equality
4 :universal-conditions)
5
6 (:predicates (u)
7 (has_letter ?ag - agent))
8
9 (:action read_letter

10 :parameters (?ag - agent)
11 :action-type (sensing (?p :: (u)))
12 :precondition (has_letter ?ag)
13 :observability-conditions
14 (?ag Fully)
15 (forall (?ag2 - agent)
16 (if (not (= ?ag2 ?ag))
17 (Partially)
18))
19)
20)

Action type: sensing

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

⇓

Action: read_letter A

e1 : 〈u, id〉 e2 : 〈¬u, id〉

A A

B

A,B A,B

11/12

EPDDL – Domain (Example)

1 (define (domain example1)
2 (:action-type-libraries lib)
3 (:requirements :del :typing :equality
4 :universal-conditions)
5
6 (:predicates (u)
7 (has_letter ?ag - agent))
8
9 (:action read_letter

10 :parameters (?ag - agent)
11 :action-type (sensing (?p :: (u)))
12 :precondition (has_letter ?ag)
13 :observability-conditions
14 (?ag Fully)
15 (forall (?ag2 - agent)
16 (if (not (= ?ag2 ?ag))
17 (Partially)
18))
19)
20)

Action type: sensing

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

⇓

Action: read_letter A

Parameters: ?p :: u

e1 : 〈u, id〉 e2 : 〈¬u, id〉

A A

B

A,B A,B

11/12

EPDDL – Domain (Example)

1 (define (domain example1)
2 (:action-type-libraries lib)
3 (:requirements :del :typing :equality
4 :universal-conditions)
5
6 (:predicates (u)
7 (has_letter ?ag - agent))
8
9 (:action read_letter

10 :parameters (?ag - agent)
11 :action-type (sensing (?p :: (u)))
12 :precondition (has_letter ?ag)
13 :observability-conditions
14 (?ag Fully)
15 (forall (?ag2 - agent)
16 (if (not (= ?ag2 ?ag))
17 (Partially)
18))
19)
20)

Action type: sensing

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

⇓

Action: read_letter A

Precondition: ?has_letter A

e1 : 〈u, id〉 e2 : 〈¬u, id〉

e1 : 〈(hl A)∧ u, id〉 e2 : 〈¬u, id〉

A A

B

A,B A,B

11/12

EPDDL – Domain (Example)

1 (define (domain example1)
2 (:action-type-libraries lib)
3 (:requirements :del :typing :equality
4 :universal-conditions)
5
6 (:predicates (u)
7 (has_letter ?ag - agent))
8
9 (:action read_letter

10 :parameters (?ag - agent)
11 :action-type (sensing (?p :: (u)))
12 :precondition (has_letter ?ag)
13 :observability-conditions
14 (?ag Fully)
15 (forall (?ag2 - agent)
16 (if (not (= ?ag2 ?ag))
17 (Partially)
18))
19)
20)

Action type: sensing

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

⇓

Action: read_letter A

Observability: A is Fully

e1 : 〈u, id〉 e2 : 〈¬u, id〉

e1 : 〈(hl A)∧ u, id〉 e2 : 〈¬u, id〉

A A

B

A,B A,B

11/12

EPDDL – Domain (Example)

1 (define (domain example1)
2 (:action-type-libraries lib)
3 (:requirements :del :typing :equality
4 :universal-conditions)
5
6 (:predicates (u)
7 (has_letter ?ag - agent))
8
9 (:action read_letter

10 :parameters (?ag - agent)
11 :action-type (sensing (?p :: (u)))
12 :precondition (has_letter ?ag)
13 :observability-conditions
14 (?ag Fully)
15 (forall (?ag2 - agent)
16 (if (not (= ?ag2 ?ag))
17 (Partially)
18))
19)
20)

Action type: sensing

e1 : 〈?p, id〉 e2 : 〈¬?p, id〉

P

F ,P F ,P

⇓

Action: read_letter A

Observability: B is Partially

e1 : 〈u, id〉 e2 : 〈¬u, id〉

e1 : 〈(hl A)∧ u, id〉 e2 : 〈¬u, id〉

A A

B

A,B A,B

11/12

FUTURE WORKS

12/12

Future Works

Finalizing the last details (we are open to your suggestions!)
Implementing full-fledged parser (with type checker)
Creating a public repository of epistemic planning domains to be used as benchmarks for
epistemic planners
Creating a public Wiki page for EPDDL

12/12

THANK YOU
Questions?

	Dynamic Epistemic Logic
	EPDDL
	Future Works

