
DELPHIC: PRACTICAL DEL
PLANNING VIA POSSIBILITIES

Alessandro Burigana
Free University of Bozen-Bolzano, Italy

Paolo Felli
University of Bologna, Italy

Marco Montali
Free University of Bozen-Bolzano, Italy

JELIA 2023
September 20

Dresden, Germany

1/14

Epistemic Planning

Epistemic planning is an enrichment of automated (multi-agent) planning where the concept
of knowledge/belief is taken into account:

Agents might do something depending on what they know
Cooperative setting: agents want to reach a common goal
Centralized setting: a single omniscient entity (the planner) is responsible for finding a
solution

2/14

A Simple Running Example

Example (Coin in the Box)
Initial situation. Anne, Bob and Carl are in
the same room. A coin placed inside a closed
box. Everybody knows that the box is closed
(c), but no one knows the position of the
coin.

There are two possible situations:
The coin lies heads up (h), and
The coin lies tails up (¬h).

Goals can include epistemic conditions:
Anne knows/believes that h,
Bob knows/believes that Anne
knows/believes whether h or not,
Carl knows/believes that Anne does not
know/believe whether h,
Both Bob and Carl do not know/believe
whether h.

2/14

DYNAMIC EPISTEMIC LOGIC

3/14

The Language

Let P be a finite set of propositional atoms and AG = {1, . . . , n} a finite set of agents.

Definition (Language LP,AG)

ϕ ::= p | ¬ϕ | ϕ∧ϕ | �iϕ,

Example (Coin in the Box)
Let P = {c , h} and AG = {Anne,Bob,Carl}. We can state the conditions of our example as
follows:

Initial conditions:∧
i∈AG(¬�ih ∧ ¬�i¬h)∧
i∈AG �ic

Goal conditions:
�Anneh

�Bob(�Anneh ∨�Anne¬h)

�Carl(¬�Anneh ∧ ¬�Anne¬h)∧
i∈{Bob,Carl}(¬�ih ∧ ¬�i¬h)

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

Figure: Initial state.

⊗

Epistemic states (pointed Kripke models):
Worlds: possible situations
Relations: what agents consider to be
possible
Valuation: what is considered to be true
in each world
Designated worlds: actual situations

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

Figure: Initial state.

⊗

Epistemic states (pointed Kripke models):
Worlds: possible situations
Relations: what agents consider to be
possible
Valuation: what is considered to be true
in each world
Designated worlds: actual situations

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Figure: Anne opens the box while only Bob is
looking (Carl is distracted).

Actions (pointed event models):
Events: what might happen relatively to
some agents’ perspective
Relations: akin to those of epistemic
models
Preconditions: what is needed for an
event to occur
Postconditions: how an event changes a
world
Designated events: what actually happens

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Product update:

(w1, e1)

: h

(w2, e1)

(w1, e2)

: h, c

(w2, e2)

: c

A,B

A,B A,B

C
C C

C

A,B,C

A,B,C A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Product update:

(w1, e1)

: h

(w2, e1)

(w1, e2)

: h, c

(w2, e2)

: c

A,B

A,B A,B

C
C C

C

A,B,C

A,B,C A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Product update:

(w1, e1) : h (w2, e1)

(w1, e2) : h, c (w2, e2) : c

A,B

A,B A,B

C
C C

C

A,B,C

A,B,C A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Product update:

(w1, e1) : h (w2, e1)

(w1, e2) : h, c (w2, e2) : c

A,B

A,B A,B

C
C C

C

A,B,C

A,B,C A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Product update:

(w1, e1) : h (w2, e1)

(w1, e2) : h, c (w2, e2) : c

A,B

A,B A,B

C
C C

C

A,B,C

A,B,C A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Product update:

(w1, e1) : h (w2, e1)

(w1, e2) : h, c (w2, e2) : c

A,B

A,B A,B

C
C C

C

A,B,C

A,B,C A,B,C

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!

4/14

DELPHIC

5/14

DELPHIC: A Novel Framework for Epistemic Planning

DEL-planning with a Possibility-based Homogeneous Information Characterisation:
Epistemic models represented by possibilities
Event models represented by eventualities
New semantics for actions: union update

6/14

Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

6/14

Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Intuitively:
u(p) specifies the truth value of the atom p (plays the role of the valuation function)
u(i) is the set of all the worlds that agent i considers possible in u (plays the role of the
accessibility relations)
A possibility spectrum plays the role of the designated worlds

6/14

Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

U = {w1}, where:

w1(h) = w1(c) = 1
w1(A) = w1(B) = w1(C) = {w1,w2}

w2(h) = 0 and w2(c) = 1
w2(A) = w2(B) = w2(C) = {w1,w2}

6/14

Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

U = {w1}, where:
w1(h) = w1(c) = 1
w1(A) = w1(B) = w1(C) = {w1,w2}

w2(h) = 0 and w2(c) = 1
w2(A) = w2(B) = w2(C) = {w1,w2}

6/14

Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

U = {w1}, where:
w1(h) = w1(c) = 1
w1(A) = w1(B) = w1(C) = {w1,w2}

w2(h) = 0 and w2(c) = 1
w2(A) = w2(B) = w2(C) = {w1,w2}

6/14

Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Definition (Truth)

u |= p iff u(p) = 1
u |= ¬ϕ iff u 6|= ϕ
u |= ϕ∧ψ iff u |= ϕ and u |= ψ
u |= �iϕ iff ∀v if v ∈ u(i) then v |= ϕ

Finally, U |= ϕ iff v |= ϕ, for all v ∈ U.

7/14

Eventualities

Let pre /∈ P be a fresh atom and let P ′ = P ∪ {pre}.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom p ′ ∈ P ′ a formula e(p ′) ∈ LP,AG

and to each agent i ∈ AG a set of eventualities e(i).

Definition (Eventuality spectrum)

An eventuality spectrum is a finite set E = {e1, . . . ek } of designated eventualities.

7/14

Eventualities

Let pre /∈ P be a fresh atom and let P ′ = P ∪ {pre}.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom p ′ ∈ P ′ a formula e(p ′) ∈ LP,AG

and to each agent i ∈ AG a set of eventualities e(i).

Definition (Eventuality spectrum)

An eventuality spectrum is a finite set E = {e1, . . . ek } of designated eventualities.

Intuitively:
e(pre) specifies precondition of e
e(p) specifies postcondition of p in e
e(i) is the set of all the eventualities that agent i considers possible in e (plays the role of
the accessibility relations)
An eventuality spectrum plays the role of the designated worlds

7/14

Eventualities

Let pre /∈ P be a fresh atom and let P ′ = P ∪ {pre}.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom p ′ ∈ P ′ a formula e(p ′) ∈ LP,AG

and to each agent i ∈ AG a set of eventualities e(i).

Definition (Eventuality spectrum)

An eventuality spectrum is a finite set E = {e1, . . . ek } of designated eventualities.

Example

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

E = {e1}, where:

e1(pre) = c , e1(h) = h and e1(c) = ⊥
e1(A) = e1(B) = {e1} and e1(C) = {e2}

e2(pre) = >, e2(h) = h and e2(c) = c

e2(A) = e2(B) = e2(C) = {e2}

7/14

Eventualities

Let pre /∈ P be a fresh atom and let P ′ = P ∪ {pre}.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom p ′ ∈ P ′ a formula e(p ′) ∈ LP,AG

and to each agent i ∈ AG a set of eventualities e(i).

Definition (Eventuality spectrum)

An eventuality spectrum is a finite set E = {e1, . . . ek } of designated eventualities.

Example

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

E = {e1}, where:
e1(pre) = c , e1(h) = h and e1(c) = ⊥
e1(A) = e1(B) = {e1} and e1(C) = {e2}

e2(pre) = >, e2(h) = h and e2(c) = c

e2(A) = e2(B) = e2(C) = {e2}

7/14

Eventualities

Let pre /∈ P be a fresh atom and let P ′ = P ∪ {pre}.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom p ′ ∈ P ′ a formula e(p ′) ∈ LP,AG

and to each agent i ∈ AG a set of eventualities e(i).

Definition (Eventuality spectrum)

An eventuality spectrum is a finite set E = {e1, . . . ek } of designated eventualities.

Example

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

E = {e1}, where:
e1(pre) = c , e1(h) = h and e1(c) = ⊥
e1(A) = e1(B) = {e1} and e1(C) = {e2}

e2(pre) = >, e2(h) = h and e2(c) = c

e2(A) = e2(B) = e2(C) = {e2}

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)

The union update of a possibility u with an applicable eventuality e is the possibility
u ′ = u ∪× e, such that:

u ′(p) = 1 iff u |= e(p)
u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the
possibility spectrum U ∪× E = {u ∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)
The union update of a possibility u with an applicable eventuality e is the possibility u ′ = u∪× e, such that:

u ′(p) = 1 iff u |= e(p)

u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum
U∪× E = {u∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = and w1

1(C) =

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = and w1

2(C) =

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)
The union update of a possibility u with an applicable eventuality e is the possibility u ′ = u∪× e, such that:

u ′(p) = 1 iff u |= e(p)

u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum
U∪× E = {u∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = {w1 ∪× e1,w2 ∪× e1} and w1

1(C) = {w1 ∪× e2,w2 ∪× e2}

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = and w1

2(C) =

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)
The union update of a possibility u with an applicable eventuality e is the possibility u ′ = u∪× e, such that:

u ′(p) = 1 iff u |= e(p)

u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum
U∪× E = {u∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = {w1

1,w
1
2} and w1

1(C) = {w2
1,w

2
2}

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = and w1

2(C) =

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)
The union update of a possibility u with an applicable eventuality e is the possibility u ′ = u∪× e, such that:

u ′(p) = 1 iff u |= e(p)

u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum
U∪× E = {u∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = {w1

1,w
1
2} and w1

1(C) = {w2
1,w

2
2}

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = {w1 ∪× e1,w2 ∪× e1} and w1

2(C) = {w1 ∪× e2,w2 ∪× e2}

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)
The union update of a possibility u with an applicable eventuality e is the possibility u ′ = u∪× e, such that:

u ′(p) = 1 iff u |= e(p)

u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum
U∪× E = {u∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = {w1

1,w
1
2} and w1

1(C) = {w2
1,w

2
2}

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = {w1

1,w
1
2} and w1

2(C) = {w2
1,w

2
2}

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)

8/14

Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)
The union update of a possibility u with an applicable eventuality e is the possibility u ′ = u∪× e, such that:

u ′(p) = 1 iff u |= e(p)

u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the possibility spectrum
U∪× E = {u∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = {w1

1,w
1
2} and w1

1(C) = {w2
1,w

2
2}

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = {w1

1,w
1
2} and w1

2(C) = {w2
1,w

2
2}

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)

8/14

DISCUSSION

9/14

Why DELPHIC? – A Tecnical Standpoint

DELPHIC overcomes some shortcomings of DEL:
Does not reuse old information (as shown before)
Blind cross-product: may result into unreachable information
→ World (w2, e2) is redundant: it is not reachable from a designated world

Example

w1 : p w2 : ¬p
⊗

e1 : 〈p, id〉 e2 : 〈¬p, id〉
=

(w1, e1) : p (w2, e2) : ¬p

B

A,B A,B A,B A,B A,B A,B

Let U = {w1} and E = {e1, e2}, where:
w1(p)=1 and w1(A)=w1(B)={w1,w2}

w2(p)=0 and w2(A)=w2(B)={w1,w2}

e1(pre)= p, e1(p)=p and e1(A)=e1(B)={e1}
e2(pre)=¬p, e2(p)=p and e2(A)=e2(B)={e2}

In DELPHIC every possibility is reachable: U ∪× E = {w1 ∪× e1} = {w1}.

9/14

Why DELPHIC? – A Tecnical Standpoint

DELPHIC overcomes some shortcomings of DEL:
Does not reuse old information (as shown before)
Blind cross-product: may result into unreachable information
→ World (w2, e2) is redundant: it is not reachable from a designated world

Example

w1 : p w2 : ¬p
⊗

e1 : 〈p, id〉 e2 : 〈¬p, id〉
=

(w1, e1) : p (w2, e2) : ¬p

B

A,B A,B A,B A,B A,B A,B

Let U = {w1} and E = {e1, e2}, where:
w1(p)=1 and w1(A)=w1(B)={w1,w2}

w2(p)=0 and w2(A)=w2(B)={w1,w2}

e1(pre)= p, e1(p)=p and e1(A)=e1(B)={e1}
e2(pre)=¬p, e2(p)=p and e2(A)=e2(B)={e2}

In DELPHIC every possibility is reachable: U ∪× E = {w1 ∪× e1} = {w1}.

9/14

Why DELPHIC? – A Tecnical Standpoint

DELPHIC overcomes some shortcomings of DEL:
Does not reuse old information (as shown before)
Blind cross-product: may result into unreachable information
→ World (w2, e2) is redundant: it is not reachable from a designated world

Example

w1 : p w2 : ¬p
⊗

e1 : 〈p, id〉 e2 : 〈¬p, id〉
=

(w1, e1) : p (w2, e2) : ¬p

B

A,B A,B A,B A,B A,B A,B

Let U = {w1} and E = {e1, e2}, where:
w1(p)=1 and w1(A)=w1(B)={w1,w2}

w2(p)=0 and w2(A)=w2(B)={w1,w2}

e1(pre)= p, e1(p)=p and e1(A)=e1(B)={e1}

e2(pre)=¬p, e2(p)=p and e2(A)=e2(B)={e2}

In DELPHIC every possibility is reachable: U ∪× E = {w1 ∪× e1} = {w1}.

10/14

Why DELPHIC? – An Implementation Standpoint

Moreover, the relation between possibilities and Kripke models have interesting implications in
terms of implementations:

To each Kripke model, we can associate a correspondent equivalent possibility (and vice
versa)

→ We have already seen this intuitively

If two Kripke models are bisimilar, they share the same correspondent possibility
Thus, possibilities are minimal objects (w.r.t. bisimulation)

→ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:
Possibilities have already been proved to provide more efficient implementations
Epistemic planner EFP 2.0 [Fab+20]: relies on a framework called mA∗ [Bar+15], which is a
fragment of DEL

10/14

Why DELPHIC? – An Implementation Standpoint

Moreover, the relation between possibilities and Kripke models have interesting implications in
terms of implementations:

To each Kripke model, we can associate a correspondent equivalent possibility (and vice
versa)
→ We have already seen this intuitively

If two Kripke models are bisimilar, they share the same correspondent possibility
Thus, possibilities are minimal objects (w.r.t. bisimulation)

→ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:
Possibilities have already been proved to provide more efficient implementations
Epistemic planner EFP 2.0 [Fab+20]: relies on a framework called mA∗ [Bar+15], which is a
fragment of DEL

10/14

Why DELPHIC? – An Implementation Standpoint

Moreover, the relation between possibilities and Kripke models have interesting implications in
terms of implementations:

To each Kripke model, we can associate a correspondent equivalent possibility (and vice
versa)
→ We have already seen this intuitively

If two Kripke models are bisimilar, they share the same correspondent possibility

Thus, possibilities are minimal objects (w.r.t. bisimulation)

→ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:
Possibilities have already been proved to provide more efficient implementations
Epistemic planner EFP 2.0 [Fab+20]: relies on a framework called mA∗ [Bar+15], which is a
fragment of DEL

10/14

Why DELPHIC? – An Implementation Standpoint

Moreover, the relation between possibilities and Kripke models have interesting implications in
terms of implementations:

To each Kripke model, we can associate a correspondent equivalent possibility (and vice
versa)
→ We have already seen this intuitively

If two Kripke models are bisimilar, they share the same correspondent possibility
Thus, possibilities are minimal objects (w.r.t. bisimulation)
→ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:
Possibilities have already been proved to provide more efficient implementations
Epistemic planner EFP 2.0 [Fab+20]: relies on a framework called mA∗ [Bar+15], which is a
fragment of DEL

10/14

Why DELPHIC? – An Implementation Standpoint

Moreover, the relation between possibilities and Kripke models have interesting implications in
terms of implementations:

To each Kripke model, we can associate a correspondent equivalent possibility (and vice
versa)
→ We have already seen this intuitively

If two Kripke models are bisimilar, they share the same correspondent possibility
Thus, possibilities are minimal objects (w.r.t. bisimulation)
→ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:
Possibilities have already been proved to provide more efficient implementations
Epistemic planner EFP 2.0 [Fab+20]: relies on a framework called mA∗ [Bar+15], which is a
fragment of DEL

10/14

EXPERIMENTAL EVALUATION

11/14

Experimental Setup

We implemented DELPHIC and the traditional Kripke-based DEL semantics.
We used the well-known declarative language ASP (Answer Set Programming).
→ Fair and transparent comparison.

We compared the two ASP models both in terms of space and time.
→ We used benchmarks found in the literature.

You can find our implementation here: github.com/a-burigana/delphic_asp.

github.com/a-burigana/delphic_asp

12/14

Experimental Evaluation

0

750000

1500000

2250000

3000000

Delphic space Kripke space

(a) Space results
0.000

75.000

150.000

225.000

300.000

Delphic time Kripke time

(b) Time results

13/14

DELPHIC vs. Kripke

s0

s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * signal_a_b

s4 = s3 * peek_a s5 = s4 * shout_tail_a

w0 a, b, cw1
a, b, c

a, b, c

w2

bb

a, c w3
a, c

bb

a, c w4

bb

a, c w5
a, c

bb

a, c w6

bb

a, c w7
c

bb

a, c

w10

c c

a

w8

b

w9

b

cc

a, b
a, b

cc

a, b

w11 a, b, c

w12

b

a, c w13

c

a, b

w14

c b

a

w0 - looking_a, -looking_b, -looking_c, -opened, tail

w1 - looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, sig) looking_a, -looking_b, looking_c, -opened, tail

w3 (w1, sig) looking_a, -looking_b, looking_c, -opened, -tail

w4 (w2, sig) looking_a, -looking_b, looking_c, opened, tail

w5 (w3, sig) looking_a, -looking_b, looking_c, opened, -tail

w6 (w4, sig) looking_a, -looking_b, looking_c, opened, tail

w7 (w5, tau) looking_a, -looking_b, looking_c, opened, -tail

w8 (w0, sig) looking_a, looking_b, -looking_c, -opened, tail

w9 (w1, sig) looking_a, looking_b, -looking_c, -opened, -tail

w10 (w6, sig) looking_a, looking_b, looking_c, opened, tail

w11 (w0, sig) looking_a, -looking_b, -looking_c, -opened, tail

w12 (w6, sig) looking_a, -looking_b, looking_c, opened, tail

w13 (w8, sig) looking_a, looking_b, -looking_c, -opened, tail

w14 (w10, sig) looking_a, looking_b, looking_c, opened, tail

13/14

DELPHIC vs. Kripke

s0 s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * peek_a
s4 = s3 * signal_a_b

s5 = s4 * shout_tail_a

w0 a, b, c

w1

a, b, c

a, b, c

w2 a, b, c

w4

a, b, c

a, b, c

w3

b

b

a, c

w5

a, c

b

b

a, c

w6 a, b, c

w10

a, b, c

a, b, c

w7

b

b

a, c

w11

a, c

b

b

a, c

w8

b

b

a, c

w12

a, c

b

b

a, c

w9

b

b

a, c

w13

a, c

b

b

a, c

w14 a, b, c

w22

a, b, c

a, b, c

w15

b

b

a, c

w23

c

b

b

a, c

w16

b

b

a, c

w24

a, c

b

b

a, c

w17

b

b

a, c

w25

c

b

b

a, c

w18

b

b

a, c

w26

a, c

b

b

a, c

w19

b

b

a, c

w27

c

b

b

a, c

w20

b

b

a, c

w28

a, c

b

b

a, c

w21

b

b

a, c

w29

c

b

b

a, c

w30 a, b, c

w46

a, b, c

a, b, c

w31

c

c

a, b

w47

a, b

c

c

a, b

w32

b

b

a, c

w48

c

b

b

a, c

w33

b

b

c

c

a

w34

b

b

a, c

w50

a, c

b

b

a, c

w35

b

b

c

c

a

w51

a

b

b

c

c

a

w36

b

b

a, c

w52

c

b

b

a, c

w37

b

b

c

c

a

w38

b

b

a, c

w54

a, c

b

b

a, c

w39

b

b

c

c

a

w55

a

b

b

c

c

a

w40

b

b

a, c

w56

c

b

b

a, c

w41

b

b

c

c

a

w42

b

b

a, c

w58

a, c

b

b

a, c

w43

b

b

c

c

a

w59

a

b

b

c

c

a

w44

b

b

a, c

w60

c

b

b

a, c

w45

b

b

c

c

a w49

b

b

c

c

a w53

b

b

c

c

aw57

b

b

c

c

aw61

b

b

c

c

a w100 a

w64

b

w96

b w66

c

w98

c

w101 a

w97

b

w99

c

w70 a, c

w102

a, c

w62

b

w94

b

a, c

b

b

w103 a, c

w95

b

w72

c

c

a

w104

a

b

b c

c

a

b

b

w105

c

a

b

w74 a, c

w106

c

b

b

a, c

b

b

w107 a, c

b

w108

c

c

a

b

b

w109

c

a

b

w78 a, c

w110

a, c

b

b

a, c

b

b

w111 a, c

b

w80

c

c

a

w112

a

b

b c

c

a

b

b

w113

c

a

b

w82 a, c

w114

c

b

b

a, c

b

b

w115 a, c

b

w116

c

c

a

b

b

w117

c

a

b

w86 a, c

w118

a, c

b

b

a, c

b

b

w119 a, c

b

w88

c

c

a

w120

a

b

bc

c

a

b

b

w121

c

a

b

w90 a, c

w122

c

b

b

a, c

b

b

w123 a, c

b

w124

c

c

a

b

b

w125

c

a

b

a, b, c

a, b, c

a, b, c

w63 a, b, c

c

c

a, b

a, b

c

c

a, b

w65

c

a, b

b

b

a, c

c

b

b

a, c

w67

b

a, c w68

b

b

c

c

a

w69

bc

a

w71

b

a, c

w73

b c

a

w75

b

a, c w76

c

c

b

b

a

w77

b c

a

w79

b

a, c

w81

bc

a

w83

b

a, c w84

c

c

b

b

a

w85

bc

a

w87

b

a, c

w89

b c

a

w91

b

a, c w92

c

c

b

b

a

w93

bc

a

a, b, c

c

a, b

b

a, c

w0 - looking_a, -looking_b, -looking_c, -opened, tail

w1 - looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, eps) looking_a, -looking_b, -looking_c, -opened, tail

w3 (w0, sig) looking_a, -looking_b, looking_c, -opened, tail

w4 (w1, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w5 (w1, sig) looking_a, -looking_b, looking_c, -opened, -tail

w6 (w2, eps) looking_a, -looking_b, -looking_c, -opened, tail

w7 (w2, sig) looking_a, -looking_b, -looking_c, opened, tail

w8 (w3, eps) looking_a, -looking_b, looking_c, -opened, tail

w9 (w3, sig) looking_a, -looking_b, looking_c, opened, tail

w10 (w4, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w11 (w4, sig) looking_a, -looking_b, -looking_c, opened, -tail

w12 (w5, eps) looking_a, -looking_b, looking_c, -opened, -tail

w13 (w5, sig) looking_a, -looking_b, looking_c, opened, -tail

w14 (w6, eps) looking_a, -looking_b, -looking_c, -opened, tail

w15 (w6, sig) looking_a, -looking_b, -looking_c, -opened, tail

w16 (w7, eps) looking_a, -looking_b, -looking_c, opened, tail

w17 (w7, sig) looking_a, -looking_b, -looking_c, opened, tail

w18 (w8, eps) looking_a, -looking_b, looking_c, -opened, tail

w19 (w8, sig) looking_a, -looking_b, looking_c, -opened, tail

w20 (w9, eps) looking_a, -looking_b, looking_c, opened, tail

w21 (w9, sig) looking_a, -looking_b, looking_c, opened, tail

w22 (w10, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w23 (w10, tau) looking_a, -looking_b, -looking_c, -opened, -tail

w24 (w11, eps) looking_a, -looking_b, -looking_c, opened, -tail

w25 (w11, tau) looking_a, -looking_b, -looking_c, opened, -tail

w26 (w12, eps) looking_a, -looking_b, looking_c, -opened, -tail

w27 (w12, tau) looking_a, -looking_b, looking_c, -opened, -tail

w28 (w13, eps) looking_a, -looking_b, looking_c, opened, -tail

w29 (w13, tau) looking_a, -looking_b, looking_c, opened, -tail

w30 (w14, eps) looking_a, -looking_b, -looking_c, -opened, tail

w31 (w14, sig) looking_a, looking_b, -looking_c, -opened, tail

w32 (w15, eps) looking_a, -looking_b, -looking_c, -opened, tail

w33 (w15, sig) looking_a, looking_b, -looking_c, -opened, tail

w34 (w16, eps) looking_a, -looking_b, -looking_c, opened, tail

w35 (w16, sig) looking_a, looking_b, -looking_c, opened, tail

w36 (w17, eps) looking_a, -looking_b, -looking_c, opened, tail

w37 (w17, sig) looking_a, looking_b, -looking_c, opened, tail

w38 (w18, eps) looking_a, -looking_b, looking_c, -opened, tail

w39 (w18, sig) looking_a, looking_b, looking_c, -opened, tail

w40 (w19, eps) looking_a, -looking_b, looking_c, -opened, tail

w41 (w19, sig) looking_a, looking_b, looking_c, -opened, tail

w42 (w20, eps) looking_a, -looking_b, looking_c, opened, tail

w43 (w20, sig) looking_a, looking_b, looking_c, opened, tail

w44 (w21, eps) looking_a, -looking_b, looking_c, opened, tail

w45 (w21, sig) looking_a, looking_b, looking_c, opened, tail

w46 (w22, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w47 (w22, sig) looking_a, looking_b, -looking_c, -opened, -tail

w48 (w23, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w49 (w23, sig) looking_a, looking_b, -looking_c, -opened, -tail

w50 (w24, eps) looking_a, -looking_b, -looking_c, opened, -tail

w51 (w24, sig) looking_a, looking_b, -looking_c, opened, -tail

w52 (w25, eps) looking_a, -looking_b, -looking_c, opened, -tail

w53 (w25, sig) looking_a, looking_b, -looking_c, opened, -tail

w54 (w26, eps) looking_a, -looking_b, looking_c, -opened, -tail

w55 (w26, sig) looking_a, looking_b, looking_c, -opened, -tail

w56 (w27, eps) looking_a, -looking_b, looking_c, -opened, -tail

w57 (w27, sig) looking_a, looking_b, looking_c, -opened, -tail

w58 (w28, eps) looking_a, -looking_b, looking_c, opened, -tail

w59 (w28, sig) looking_a, looking_b, looking_c, opened, -tail

w60 (w29, eps) looking_a, -looking_b, looking_c, opened, -tail

w61 (w29, sig) looking_a, looking_b, looking_c, opened, -tail

w62 (w30, eps) looking_a, -looking_b, -looking_c, -opened, tail

w63 (w30, sig) looking_a, -looking_b, -looking_c, -opened, tail

w64 (w31, eps) looking_a, looking_b, -looking_c, -opened, tail

w65 (w31, sig) looking_a, looking_b, -looking_c, -opened, tail

w66 (w32, eps) looking_a, -looking_b, -looking_c, -opened, tail

w67 (w32, sig) looking_a, -looking_b, -looking_c, -opened, tail

w68 (w33, eps) looking_a, looking_b, -looking_c, -opened, tail

w69 (w33, sig) looking_a, looking_b, -looking_c, -opened, tail

w70 (w34, eps) looking_a, -looking_b, -looking_c, opened, tail

w71 (w34, sig) looking_a, -looking_b, -looking_c, opened, tail

w72 (w35, eps) looking_a, looking_b, -looking_c, opened, tail

w73 (w35, sig) looking_a, looking_b, -looking_c, opened, tail

w74 (w36, eps) looking_a, -looking_b, -looking_c, opened, tail

w75 (w36, sig) looking_a, -looking_b, -looking_c, opened, tail

w76 (w37, eps) looking_a, looking_b, -looking_c, opened, tail

w77 (w37, sig) looking_a, looking_b, -looking_c, opened, tail

w78 (w38, eps) looking_a, -looking_b, looking_c, -opened, tail

w79 (w38, sig) looking_a, -looking_b, looking_c, -opened, tail

w80 (w39, eps) looking_a, looking_b, looking_c, -opened, tail

w81 (w39, sig) looking_a, looking_b, looking_c, -opened, tail

w82 (w40, eps) looking_a, -looking_b, looking_c, -opened, tail

w83 (w40, sig) looking_a, -looking_b, looking_c, -opened, tail

w84 (w41, eps) looking_a, looking_b, looking_c, -opened, tail

w85 (w41, sig) looking_a, looking_b, looking_c, -opened, tail

w86 (w42, eps) looking_a, -looking_b, looking_c, opened, tail

w87 (w42, sig) looking_a, -looking_b, looking_c, opened, tail

w88 (w43, eps) looking_a, looking_b, looking_c, opened, tail

w89 (w43, sig) looking_a, looking_b, looking_c, opened, tail

w90 (w44, eps) looking_a, -looking_b, looking_c, opened, tail

w91 (w44, sig) looking_a, -looking_b, looking_c, opened, tail

w92 (w45, eps) looking_a, looking_b, looking_c, opened, tail

w93 (w45, sig) looking_a, looking_b, looking_c, opened, tail

w94 (w46, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w95 (w46, tau) looking_a, -looking_b, -looking_c, -opened, -tail

w96 (w47, eps) looking_a, looking_b, -looking_c, -opened, -tail

w97 (w47, tau) looking_a, looking_b, -looking_c, -opened, -tail

w98 (w48, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w99 (w48, tau) looking_a, -looking_b, -looking_c, -opened, -tail

w100 (w49, eps) looking_a, looking_b, -looking_c, -opened, -tail

w101 (w49, tau) looking_a, looking_b, -looking_c, -opened, -tail

w102 (w50, eps) looking_a, -looking_b, -looking_c, opened, -tail

w103 (w50, tau) looking_a, -looking_b, -looking_c, opened, -tail

w104 (w51, eps) looking_a, looking_b, -looking_c, opened, -tail

w105 (w51, tau) looking_a, looking_b, -looking_c, opened, -tail

w106 (w52, eps) looking_a, -looking_b, -looking_c, opened, -tail

w107 (w52, tau) looking_a, -looking_b, -looking_c, opened, -tail

w108 (w53, eps) looking_a, looking_b, -looking_c, opened, -tail

w109 (w53, tau) looking_a, looking_b, -looking_c, opened, -tail

w110 (w54, eps) looking_a, -looking_b, looking_c, -opened, -tail

w111 (w54, tau) looking_a, -looking_b, looking_c, -opened, -tail

w112 (w55, eps) looking_a, looking_b, looking_c, -opened, -tail

w113 (w55, tau) looking_a, looking_b, looking_c, -opened, -tail

w114 (w56, eps) looking_a, -looking_b, looking_c, -opened, -tail

w115 (w56, tau) looking_a, -looking_b, looking_c, -opened, -tail

w116 (w57, eps) looking_a, looking_b, looking_c, -opened, -tail

w117 (w57, tau) looking_a, looking_b, looking_c, -opened, -tail

w118 (w58, eps) looking_a, -looking_b, looking_c, opened, -tail

w119 (w58, tau) looking_a, -looking_b, looking_c, opened, -tail

w120 (w59, eps) looking_a, looking_b, looking_c, opened, -tail

w121 (w59, tau) looking_a, looking_b, looking_c, opened, -tail

w122 (w60, eps) looking_a, -looking_b, looking_c, opened, -tail

w123 (w60, tau) looking_a, -looking_b, looking_c, opened, -tail

w124 (w61, eps) looking_a, looking_b, looking_c, opened, -tail

w125 (w61, tau) looking_a, looking_b, looking_c, opened, -tail

13/14

CONCLUSIONS

14/14

Conclusions and Future Works

We introduced DELPHIC, an alternative semantics for Dynamic Epistemic Logic.
The DELPHIC framework is equivalent to the Kripke-based one.
We empirically showed that DELPHIC outperforms the traditional Kripke-based semantics
both in space and time.

Future works:
Implement DELPHIC in more competitive solvers (e.g., EFP [Fab+20]).

14/14

THANK YOU
Questions?

	Dynamic Epistemic Logic
	DELPHIC
	Discussion
	Experimental Evaluation
	Conclusions

