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Epistemic Planning

Epistemic planning is an enrichment of automated (multi-agent) planning where the concept
of knowledge/belief is taken into account:

Agents might do something depending on what they know
Cooperative setting: agents want to reach a common goal
Centralized setting: a single omniscient entity (the planner) is responsible for finding a
solution
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A Simple Running Example

Example (Coin in the Box)
Initial situation. Anne, Bob and Carl are in
the same room. A coin placed inside a closed
box. Everybody knows that the box is closed
(c), but no one knows the position of the
coin.

There are two possible situations:
The coin lies heads up (h), and
The coin lies tails up (¬h).

Goals can include epistemic conditions:
Anne knows/believes that h,
Bob knows/believes that Anne
knows/believes whether h or not,
Carl knows/believes that Anne does not
know/believe whether h,
Both Bob and Carl do not know/believe
whether h.
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DYNAMIC EPISTEMIC LOGIC
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The Language

Let P be a finite set of propositional atoms and AG = {1, . . . , n} a finite set of agents.

Definition (Language LP,AG)

ϕ ::= p | ¬ϕ | ϕ∧ϕ | �iϕ,

Example (Coin in the Box)
Let P = {c , h} and AG = {Anne,Bob,Carl}. We can state the conditions of our example as
follows:

Initial conditions:∧
i∈AG(¬�ih ∧ ¬�i¬h)∧
i∈AG �ic

Goal conditions:
�Anneh

�Bob(�Anneh ∨�Anne¬h)

�Carl(¬�Anneh ∧ ¬�Anne¬h)∧
i∈{Bob,Carl}(¬�ih ∧ ¬�i¬h)
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The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

Figure: Initial state.

⊗

Epistemic states (pointed Kripke models):
Worlds: possible situations
Relations: what agents consider to be
possible
Valuation: what is considered to be true
in each world
Designated worlds: actual situations

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!
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Epistemic states (pointed Kripke models):
Worlds: possible situations
Relations: what agents consider to be
possible
Valuation: what is considered to be true
in each world
Designated worlds: actual situations

Definition (Truth)

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M, v) |= ϕ

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!
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The Semantics

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

⊗

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

Figure: Anne opens the box while only Bob is
looking (Carl is distracted).

Actions (pointed event models):
Events: what might happen relatively to
some agents’ perspective
Relations: akin to those of epistemic
models
Preconditions: what is needed for an
event to occur
Postconditions: how an event changes a
world
Designated events: what actually happens

Notice that w1 (resp., w2) and (w1, e2) (resp., (w2, e2)) encode the same information, but
they are distinct objects!
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DELPHIC
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DELPHIC: A Novel Framework for Epistemic Planning

DEL-planning with a Possibility-based Homogeneous Information Characterisation:
Epistemic models represented by possibilities
Event models represented by eventualities
New semantics for actions: union update
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Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.
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to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Intuitively:
u(p) specifies the truth value of the atom p (plays the role of the valuation function)
u(i) is the set of all the worlds that agent i considers possible in u (plays the role of the
accessibility relations)
A possibility spectrum plays the role of the designated worlds
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Possibilities

Definition (Possibility [GG97])

A possibility u is a function that assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and
to each agent i ∈ AG a set of possibilities u(i).

Definition (Possibility spectrum)

A possibility spectrum is a non-empty set U = {u1, . . . , uk} of designated possibilities.

Definition (Truth)

u |= p iff u(p) = 1
u |= ¬ϕ iff u 6|= ϕ
u |= ϕ∧ψ iff u |= ϕ and u |= ψ
u |= �iϕ iff ∀v if v ∈ u(i) then v |= ϕ

Finally, U |= ϕ iff v |= ϕ, for all v ∈ U.
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Eventualities

Let pre /∈ P be a fresh atom and let P ′ = P ∪ {pre}.

Definition (Eventuality)

An eventuality e is a function that assigns to each atom p ′ ∈ P ′ a formula e(p ′) ∈ LP,AG

and to each agent i ∈ AG a set of eventualities e(i).

Definition (Eventuality spectrum)

An eventuality spectrum is a finite set E = {e1, . . . ek } of designated eventualities.
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Union Update

An eventuality e is applicable in a possibility u iff u |= e(pre).

Definition (Union Update)

The union update of a possibility u with an applicable eventuality e is the possibility
u ′ = u ∪× e, such that:

u ′(p) = 1 iff u |= e(p)
u ′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an eventuality spectrum E is the
possibility spectrum U ∪× E = {u ∪× e | u ∈ U, e ∈ E and u |= e(pre)}.
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Example

w1 : h, c w2 : c

A,B,C

A,B,C A,B,C

e1 : 〈c , {c←⊥}〉 e2 : 〈>, id〉

C

A,B A,B,C

U ∪× E = {w1 ∪× e1} = {w1
1}, where:

w1
1(c) = 0 and w1

1(h) = 1
w1

1(A) = w1
1(B) = and w1

1(C ) =

w1
2(c) = 0 and w1

2(h) = 0
w1

2(A) = w1
2(B) = and w1

2(C ) =

w2
1 = w1 and w2

2 = w2 (we can reuse old information!)
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DISCUSSION
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Why DELPHIC? – A Tecnical Standpoint

DELPHIC overcomes some shortcomings of DEL:
Does not reuse old information (as shown before)
Blind cross-product: may result into unreachable information
→ World (w2, e2) is redundant: it is not reachable from a designated world

Example

w1 : p w2 : ¬p
⊗

e1 : 〈p, id〉 e2 : 〈¬p, id〉
=

(w1, e1) : p (w2, e2) : ¬p

B

A,B A,B A,B A,B A,B A,B

Let U = {w1} and E = {e1, e2}, where:
w1(p)=1 and w1(A)=w1(B)={w1,w2}

w2(p)=0 and w2(A)=w2(B)={w1,w2}

e1(pre)= p, e1(p)=p and e1(A)=e1(B)={e1}
e2(pre)=¬p, e2(p)=p and e2(A)=e2(B)={e2}

In DELPHIC every possibility is reachable: U ∪× E = {w1 ∪× e1} = {w1}.
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Why DELPHIC? – An Implementation Standpoint

Moreover, the relation between possibilities and Kripke models have interesting implications in
terms of implementations:

To each Kripke model, we can associate a correspondent equivalent possibility (and vice
versa)

→ We have already seen this intuitively

If two Kripke models are bisimilar, they share the same correspondent possibility
Thus, possibilities are minimal objects (w.r.t. bisimulation)

→ Possibilities allow for a more compact representation

We can exploit this property in implementations of tools:
Possibilities have already been proved to provide more efficient implementations
Epistemic planner EFP 2.0 [Fab+20]: relies on a framework called mA∗ [Bar+15], which is a
fragment of DEL
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EXPERIMENTAL EVALUATION
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Experimental Setup

We implemented DELPHIC and the traditional Kripke-based DEL semantics.
We used the well-known declarative language ASP (Answer Set Programming).
→ Fair and transparent comparison.

We compared the two ASP models both in terms of space and time.
→ We used benchmarks found in the literature.

You can find our implementation here: github.com/a-burigana/delphic_asp.

github.com/a-burigana/delphic_asp
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Experimental Evaluation
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(a) Space results
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(b) Time results
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DELPHIC vs. Kripke

s0

s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * signal_a_b

s4 = s3 * peek_a s5 = s4 * shout_tail_a

w0 a, b, cw1
a, b, c

a, b, c

w2

bb

a, c w3
a, c

bb

a, c w4

bb

a, c w5
a, c

bb

a, c w6

bb

a, c w7
c

bb

a, c

w10

c c

a

w8

b

w9

b

cc

a, b
a, b

cc

a, b

w11 a, b, c

w12

b

a, c w13

c

a, b

w14

c b

a

w0 -  looking_a, -looking_b, -looking_c, -opened,  tail

w1 -  looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, sig)  looking_a, -looking_b,  looking_c, -opened,  tail

w3 (w1, sig)  looking_a, -looking_b,  looking_c, -opened, -tail

w4 (w2, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w5 (w3, sig)  looking_a, -looking_b,  looking_c,  opened, -tail

w6 (w4, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w7 (w5, tau)  looking_a, -looking_b,  looking_c,  opened, -tail

w8 (w0, sig)  looking_a,  looking_b, -looking_c, -opened,  tail

w9 (w1, sig)  looking_a,  looking_b, -looking_c, -opened, -tail

w10 (w6, sig)  looking_a,  looking_b,  looking_c,  opened,  tail

w11 (w0, sig)  looking_a, -looking_b, -looking_c, -opened,  tail

w12 (w6, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w13 (w8, sig)  looking_a,  looking_b, -looking_c, -opened,  tail

w14 (w10, sig)  looking_a,  looking_b,  looking_c,  opened,  tail
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DELPHIC vs. Kripke

s0 s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * peek_a
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b

b

a, c

w12

a, c

b

b

a, c

w9

b

b

a, c

w13
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b

b

a, c

w14 a, b, c

w22

a, b, c

a, b, c

w15

b

b

a, c

w23

c

b

b

a, c

w16

b

b

a, c
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a, c

b

b

a, c

w17

b
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b

a, c
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b
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a, c

w30 a, b, c
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a, b, c
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c
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c

c

a, b
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b

b
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c
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b
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a

b
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b
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b

a, c

b

b

w123 a, c
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c
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b c
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b c
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b c
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a

a, b, c
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a, c

w0 -  looking_a, -looking_b, -looking_c, -opened,  tail

w1 -  looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w3 (w0, sig)  looking_a, -looking_b,  looking_c, -opened,  tail

w4 (w1, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w5 (w1, sig)  looking_a, -looking_b,  looking_c, -opened, -tail

w6 (w2, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w7 (w2, sig)  looking_a, -looking_b, -looking_c,  opened,  tail

w8 (w3, eps)  looking_a, -looking_b,  looking_c, -opened,  tail

w9 (w3, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w10 (w4, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w11 (w4, sig)  looking_a, -looking_b, -looking_c,  opened, -tail

w12 (w5, eps)  looking_a, -looking_b,  looking_c, -opened, -tail

w13 (w5, sig)  looking_a, -looking_b,  looking_c,  opened, -tail

w14 (w6, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w15 (w6, sig)  looking_a, -looking_b, -looking_c, -opened,  tail

w16 (w7, eps)  looking_a, -looking_b, -looking_c,  opened,  tail

w17 (w7, sig)  looking_a, -looking_b, -looking_c,  opened,  tail

w18 (w8, eps)  looking_a, -looking_b,  looking_c, -opened,  tail

w19 (w8, sig)  looking_a, -looking_b,  looking_c, -opened,  tail

w20 (w9, eps)  looking_a, -looking_b,  looking_c,  opened,  tail

w21 (w9, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w22 (w10, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w23 (w10, tau)  looking_a, -looking_b, -looking_c, -opened, -tail

w24 (w11, eps)  looking_a, -looking_b, -looking_c,  opened, -tail

w25 (w11, tau)  looking_a, -looking_b, -looking_c,  opened, -tail

w26 (w12, eps)  looking_a, -looking_b,  looking_c, -opened, -tail

w27 (w12, tau)  looking_a, -looking_b,  looking_c, -opened, -tail

w28 (w13, eps)  looking_a, -looking_b,  looking_c,  opened, -tail

w29 (w13, tau)  looking_a, -looking_b,  looking_c,  opened, -tail

w30 (w14, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w31 (w14, sig)  looking_a,  looking_b, -looking_c, -opened,  tail

w32 (w15, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w33 (w15, sig)  looking_a,  looking_b, -looking_c, -opened,  tail

w34 (w16, eps)  looking_a, -looking_b, -looking_c,  opened,  tail

w35 (w16, sig)  looking_a,  looking_b, -looking_c,  opened,  tail

w36 (w17, eps)  looking_a, -looking_b, -looking_c,  opened,  tail

w37 (w17, sig)  looking_a,  looking_b, -looking_c,  opened,  tail

w38 (w18, eps)  looking_a, -looking_b,  looking_c, -opened,  tail

w39 (w18, sig)  looking_a,  looking_b,  looking_c, -opened,  tail

w40 (w19, eps)  looking_a, -looking_b,  looking_c, -opened,  tail

w41 (w19, sig)  looking_a,  looking_b,  looking_c, -opened,  tail

w42 (w20, eps)  looking_a, -looking_b,  looking_c,  opened,  tail

w43 (w20, sig)  looking_a,  looking_b,  looking_c,  opened,  tail

w44 (w21, eps)  looking_a, -looking_b,  looking_c,  opened,  tail

w45 (w21, sig)  looking_a,  looking_b,  looking_c,  opened,  tail

w46 (w22, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w47 (w22, sig)  looking_a,  looking_b, -looking_c, -opened, -tail

w48 (w23, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w49 (w23, sig)  looking_a,  looking_b, -looking_c, -opened, -tail

w50 (w24, eps)  looking_a, -looking_b, -looking_c,  opened, -tail

w51 (w24, sig)  looking_a,  looking_b, -looking_c,  opened, -tail

w52 (w25, eps)  looking_a, -looking_b, -looking_c,  opened, -tail

w53 (w25, sig)  looking_a,  looking_b, -looking_c,  opened, -tail

w54 (w26, eps)  looking_a, -looking_b,  looking_c, -opened, -tail

w55 (w26, sig)  looking_a,  looking_b,  looking_c, -opened, -tail

w56 (w27, eps)  looking_a, -looking_b,  looking_c, -opened, -tail

w57 (w27, sig)  looking_a,  looking_b,  looking_c, -opened, -tail

w58 (w28, eps)  looking_a, -looking_b,  looking_c,  opened, -tail

w59 (w28, sig)  looking_a,  looking_b,  looking_c,  opened, -tail

w60 (w29, eps)  looking_a, -looking_b,  looking_c,  opened, -tail

w61 (w29, sig)  looking_a,  looking_b,  looking_c,  opened, -tail

w62 (w30, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w63 (w30, sig)  looking_a, -looking_b, -looking_c, -opened,  tail

w64 (w31, eps)  looking_a,  looking_b, -looking_c, -opened,  tail

w65 (w31, sig)  looking_a,  looking_b, -looking_c, -opened,  tail

w66 (w32, eps)  looking_a, -looking_b, -looking_c, -opened,  tail

w67 (w32, sig)  looking_a, -looking_b, -looking_c, -opened,  tail

w68 (w33, eps)  looking_a,  looking_b, -looking_c, -opened,  tail

w69 (w33, sig)  looking_a,  looking_b, -looking_c, -opened,  tail

w70 (w34, eps)  looking_a, -looking_b, -looking_c,  opened,  tail

w71 (w34, sig)  looking_a, -looking_b, -looking_c,  opened,  tail

w72 (w35, eps)  looking_a,  looking_b, -looking_c,  opened,  tail

w73 (w35, sig)  looking_a,  looking_b, -looking_c,  opened,  tail

w74 (w36, eps)  looking_a, -looking_b, -looking_c,  opened,  tail

w75 (w36, sig)  looking_a, -looking_b, -looking_c,  opened,  tail

w76 (w37, eps)  looking_a,  looking_b, -looking_c,  opened,  tail

w77 (w37, sig)  looking_a,  looking_b, -looking_c,  opened,  tail

w78 (w38, eps)  looking_a, -looking_b,  looking_c, -opened,  tail

w79 (w38, sig)  looking_a, -looking_b,  looking_c, -opened,  tail

w80 (w39, eps)  looking_a,  looking_b,  looking_c, -opened,  tail

w81 (w39, sig)  looking_a,  looking_b,  looking_c, -opened,  tail

w82 (w40, eps)  looking_a, -looking_b,  looking_c, -opened,  tail

w83 (w40, sig)  looking_a, -looking_b,  looking_c, -opened,  tail

w84 (w41, eps)  looking_a,  looking_b,  looking_c, -opened,  tail

w85 (w41, sig)  looking_a,  looking_b,  looking_c, -opened,  tail

w86 (w42, eps)  looking_a, -looking_b,  looking_c,  opened,  tail

w87 (w42, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w88 (w43, eps)  looking_a,  looking_b,  looking_c,  opened,  tail

w89 (w43, sig)  looking_a,  looking_b,  looking_c,  opened,  tail

w90 (w44, eps)  looking_a, -looking_b,  looking_c,  opened,  tail

w91 (w44, sig)  looking_a, -looking_b,  looking_c,  opened,  tail

w92 (w45, eps)  looking_a,  looking_b,  looking_c,  opened,  tail

w93 (w45, sig)  looking_a,  looking_b,  looking_c,  opened,  tail

w94 (w46, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w95 (w46, tau)  looking_a, -looking_b, -looking_c, -opened, -tail

w96 (w47, eps)  looking_a,  looking_b, -looking_c, -opened, -tail

w97 (w47, tau)  looking_a,  looking_b, -looking_c, -opened, -tail

w98 (w48, eps)  looking_a, -looking_b, -looking_c, -opened, -tail

w99 (w48, tau)  looking_a, -looking_b, -looking_c, -opened, -tail

w100 (w49, eps)  looking_a,  looking_b, -looking_c, -opened, -tail

w101 (w49, tau)  looking_a,  looking_b, -looking_c, -opened, -tail

w102 (w50, eps)  looking_a, -looking_b, -looking_c,  opened, -tail

w103 (w50, tau)  looking_a, -looking_b, -looking_c,  opened, -tail

w104 (w51, eps)  looking_a,  looking_b, -looking_c,  opened, -tail

w105 (w51, tau)  looking_a,  looking_b, -looking_c,  opened, -tail

w106 (w52, eps)  looking_a, -looking_b, -looking_c,  opened, -tail

w107 (w52, tau)  looking_a, -looking_b, -looking_c,  opened, -tail

w108 (w53, eps)  looking_a,  looking_b, -looking_c,  opened, -tail

w109 (w53, tau)  looking_a,  looking_b, -looking_c,  opened, -tail

w110 (w54, eps)  looking_a, -looking_b,  looking_c, -opened, -tail

w111 (w54, tau)  looking_a, -looking_b,  looking_c, -opened, -tail

w112 (w55, eps)  looking_a,  looking_b,  looking_c, -opened, -tail

w113 (w55, tau)  looking_a,  looking_b,  looking_c, -opened, -tail

w114 (w56, eps)  looking_a, -looking_b,  looking_c, -opened, -tail

w115 (w56, tau)  looking_a, -looking_b,  looking_c, -opened, -tail

w116 (w57, eps)  looking_a,  looking_b,  looking_c, -opened, -tail

w117 (w57, tau)  looking_a,  looking_b,  looking_c, -opened, -tail

w118 (w58, eps)  looking_a, -looking_b,  looking_c,  opened, -tail

w119 (w58, tau)  looking_a, -looking_b,  looking_c,  opened, -tail

w120 (w59, eps)  looking_a,  looking_b,  looking_c,  opened, -tail

w121 (w59, tau)  looking_a,  looking_b,  looking_c,  opened, -tail

w122 (w60, eps)  looking_a, -looking_b,  looking_c,  opened, -tail

w123 (w60, tau)  looking_a, -looking_b,  looking_c,  opened, -tail

w124 (w61, eps)  looking_a,  looking_b,  looking_c,  opened, -tail

w125 (w61, tau)  looking_a,  looking_b,  looking_c,  opened, -tail
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Conclusions and Future Works

We introduced DELPHIC, an alternative semantics for Dynamic Epistemic Logic.
The DELPHIC framework is equivalent to the Kripke-based one.
We empirically showed that DELPHIC outperforms the traditional Kripke-based semantics
both in space and time.

Future works:
Implement DELPHIC in more competitive solvers (e.g., EFP [Fab+20]).
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THANK YOU
Questions?
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