
delphic: Practical DEL Planning via Possibilities
(Supplementary Material)

Alessandro Burigana1[0000−0002−9977−6735], Paolo Felli2[0000−0001−9561−8775],
and Marco Montali1[0000−0002−8021−3430]

1 Free University of Bozen-Bolzano, Italy {burigana, montali}@inf.unibz.it
2 University of Bologna, Italy paolo.felli@unibo.it

A Full Proofs

Lemma 1. Let (E , Ed) be an MPEM applicable in the MPKM (M,Wd), with
solutions E and W, respectively. Then the possibility spectrum W′ = W∪× E is the
solution of (M ′,W ′d) = (M,Wd)⊗ (E , Ed).

Proof. Let M = (W,R, V), E = (E,Q, pre, post) and M ′ = (W ′, R′, V ′). Let δM
and δE be the decorations for M and E, respectively. Let then (M̂, Ŵd) be the pic-
ture of W′ via the decoration δ, where M̂ = (Ŵ , R̂, V̂). By Proposition 1, to prove
that W′ is the solution of (M ′,W ′d), we need to show that (M ′,W ′d)↔(M̂, Ŵd).
Let B ⊆W ′ × Ŵ be a relation such that:

(w′, ŵ) ∈ B ⇔ w′ = (w, e) ∧ δ(ŵ) = δM (w) ∪× δE(e).

We now show that B is a bisimulation between M ′ and M̂ . Let (w′, ŵ) ∈ B, with
w′ = (w, e) and let v′ = (v, f) ∈ W ′. Let w = δM (w), e = δE(e), v = δM (v) and
f = δE(f). Finally, let w′ = w ∪× e = δ(ŵ) and v′ = v ∪× f.
– (Atom) Let p ∈ P be a propositional atom. Then:

w′ ∈ V ′(p) Def. 6⇔ (M,w) |= post(e)(p)
Pr. 2, Def. 17⇔ w |= e(p)

Def. 19⇔ w′(p) = 1
Def. 14⇔ ŵ ∈ V̂ (p)

– (Forth/Back) Let i ∈ AG be an agent. Then:
w′R′iv

′ Def. 6⇔ wRiv, eQif, (M,w) |= pre(e) and
(M,v) |= pre(f)

Pr. 2, Def. 17⇔ v ∈ w(i), f ∈ e(i),w |= e(pre) and
v |= f(pre)

Def. 19⇔ v′ ∈ w′(i)
Def. 14⇔ ŵR̂iv̂

– (Designated) Let (w′d, ŵd) ∈ B, with w′d = (w, e). Then:

2 A. Burigana et al.

w′d∈W ′d
Def. 6⇔ w∈Wd, e∈Ed and (M,w)|=pre(e)

Pr. 2, Def. 17⇔ w ∈W, e ∈ E and w |= e(pre)
Def. 19⇔ w′ ∈W′
Def. 14⇔ ŵd ∈ Ŵd

B ASP Encodings

In this section, we describes the Answer Set Programming (ASP) encodings of
delphic and of the traditional Kripke semantics for DEL. We assume that the
reader is familiar with the basics concepts of ASP. Notably, our encodings make
use of the multi-shot solving strategy provided by the ASP-solver clingo, which
provides fine-grained control over grounding and solving of ASP programs, and is
instrumental to implementing an incremental strategy for solving. For a detailed
introduction on multi-shot ASP solving, we refer the reader to [3,4].

We developed our ASP encodings in such a way that delphic objects (e.g.,
possibility/eventuality spectrums) and DEL objects (e.g., MPKMs/MPEMs) are
encoded by closely mirroring each other, and only differing in the two update
operators (i.e., union update and product update). This homogeneity is instru-
mental to obtain a fair experimental comparison of the two encodings, presented
in Section 4 of the main paper. At the same time, as detailed later, we stress
that the timings exhibited by our ASP encoding of the Kripke semantics are
comparable to those shown by the state-of-the-art solver EFP 2.0 [2], which also
implements on the Kripke semantics. Due to the similarity of the two encod-
ings, in the following we use generic terms such as “epistemic state/action” and
“planning task” to abstract away from which underlying semantics is actually
chosen.

The delphic encoding presented in this section constitutes a contribution
of this paper of independent interest. In fact, it generalizes the ASP-based epis-
temic planner PLATO [1], which implements a possibility-based semantics for
a fragment of DEL [2]. Moreover, having an ASP-based solver for epistemic
planning has several benefits. First, the declarative encoding of the delphic se-
mantics allows for an implementation that is transparent and easier to inspect.
Second, we exploited the Python API offered by clingo to implement a graphical
representation that shows the epistemic states visited by the planner. We thus
obtain a practical and useful tool that allows to visualize the evolution of the
system. This feature is instrumental in different tasks, such as designing new
epistemic planning domains and debugging the correctness of implementations3.
We concretely show a graphical comparison of the output of the two encodings
in the appendix on a concrete domain instance (we do not directly report it here
due to space reasons).

The remainder of the section is as follows. First, we briefly describe how
incremental solving is achieved by the multi-shot solving technique (Section B.1).

3 The full code and documentation of the ASP encodings are available at
https://github.com/a-burigana/delphic_asp.

delphic: Practical DEL Planning via Possibilities (Supplementary Material) 3

Then, we illustrate both encodings component by component: (i) formulae in
Section B.2, (ii) planning tasks in Section B.3, (iii) epistemic states in Section
B.4, (iv) truth conditions in Section B.5, and (v) update operators in Section
B.6).

B.1 Multi-shot Encoding

The multi-shot approach allows one to divide an ASP encoding into sub-programs,
then handling grounding and solving of these sub-programs separately. In par-
ticular, this technique is useful to implement incremental solving, which, at each
time step, allows to extend the ASP program in order to look for solutions of
increasing size. Intuitively, every step mimics a Breadth-First Search over the
planning state space: at each time step t, if a solution is not found (i.e., there
is no plan of length t that satisfies the goal), the ASP program is expanded to
look for a longer plan.

To achieve incremental solving, we build on the approach by Gebser et al. [3],
splitting our encodings in three subprograms: 1. program base, which contains all
the static information (i.e., input information on the planning task); 2. program
step(t), where t>0, which describes the evolution of the system (i.e., updates
semantics); and 3. program check(t), where t≥0, which verify the truth of
formulae of the domain and, in particular, of the goal formula. Here, t represents
the current time step that is being considered. In the reminder of this section,
when we describe components of the encodings pertaining to the sub-programs
step(t) and check(t), we assume t fixed.

B.2 Formulae

We represent epistemic formulae through nested ASP predicates. To enhance
the performance of grounding and solving, we assume that all input formulae
are given in a normal form where occurrences of the �i operators are replaced by
the dual representation ¬♦i¬, and where double negation is simplified. Agents
and atoms are represented by the ASP predicates agent(AG) and atom(P), re-
spectively. A formula ϕ is encoded inductively on its structure: 1. ϕ = p is
encoded by p; 2. ϕ = ¬ψ is encoded by neg(PSI); 3. ϕ = ψ1 ∧ ψ2 is encoded by
and(PSI1, PSI2); and 4. ϕ = ♦iψ is encoded by dia(i, PSI).

B.3 Planning Tasks

We now describe our ASP encoding of a planning task.
Initial State. The initial state is given by the following ASP predicates: 1. w_init(W):
W is an initial possibility/possible world; 2. r_init(W1, W2, AG): in W1, agent AG
considers W2 to be possible; 3. v_init(W, P): atom P is true in W; 4. dw_init(W):
W is a designated possibility/world.
Actions. To obtain efficient encodings of the two semantics, and directly sup-
port existing benchmarks from the literature, we introduce two features in the

4 A. Burigana et al.

definition of actions, namely (global) action preconditions and observability con-
ditions.

An action precondition is specified with the ASP predicate action_pre(ACT, PRE)
and represents the applicability of the action as a whole. This is syntactic sugar:
action preconditions do not modify the expressiveness of epistemic actions, and
one can always get an equivalent epistemic action that does not employ them.

Observability conditions provide a useful way to compactly represent epis-
temic actions. Namely, agents are split into observability groups classifying dif-
ferent perspectives of agents w.r.t. an action. For instance, in Example 2, agent
a is fully observant, since it is the one that performs the action, whereas agent b
is oblivious, since it does not know that the action is taking place. Then, as we
show below, the information regarding which eventuality/event are considered
to be possible is lifted to observability groups. Each action must then specify
the observability conditions for each agent, assigning each agent to an observ-
ability group. This strategy yields an much more succinct representation since
each action needs to be substantiated for each group combination, rather than
for each agent combination.

We are now ready to describe the ASP encoding of an action ACT: 1. e(ACT, E):
E is an eventuality/event of ACT; 2. q(ACT, E1, E2, GR): in E1, the observability
group GR considers E2 to be possible; 3. obs(ACT, AG, GR, COND): agent AG is in the
observability group GR if the condition COND is satisfied by the current epistemic
state; 4. pre(ACT, E, PRE): the precondition of E is PRE; 5. post(ACT, E, P, POST):
the postcondition of P in E is POST; 6. de(ACT, E): E is a designated eventual-
ity/event of ACT.

We also define some auxiliary ASP predicates that will be used in the update
encodings (Section B.6), namely idle(ACT, E) and inertia(ACT, E, P), which are
calculated at the beginning of the ASP computation. The former predicate states
that E does not affect the worlds in any way (e.g., e2 in Example 2 is idle). The
latter predicate states that atom P is not changed by the postconditions of E.
Goal. The goal of a planning task is represented by the ASP goal(F) predicates.
It is possible to declare multiple goal formulae, so that the goal condition of the
planning task is the conjunction of all these goal predicates.

B.4 Epistemic States

The components of an epistemic state that must be represented (in delphic
as well as in the traditional DEL semantics) are four: (i) possibilities/possible
worlds; (ii) information states/accessibility relations; (iii) valuation of proposi-
tional atoms; (iv) designated possibilities/worlds.
Possibilities and Possible Worlds. To describe possibilities and possible
worlds, we make use of the ASP predicate w(t, W, E). A possibility/world needs
three variable to be univocally identified:
– t: represents the time instant when the possibility/world was created. In the

initial state, the time is set to 0;
– W: represents the possibility/world that is being updated;
– E: represents the eventuality/event that is updating W.

delphic: Practical DEL Planning via Possibilities (Supplementary Material) 5

As at planning time new possibilities/worlds are created dynamically, we are
faced with the challenge of finding a suitable ASP representation that correctly
and univocally encodes the worlds that are being updated during each action.
This is best explained with an example. Suppose we update the possibility/world
w(t−1, W, E) with the eventuality/event e(ACT, F) and let w(t, X, F) be the result
of the update. Intuitively, we can see X as representing the world being updated
(i.e., w(t−1, W, E)). Thus, the challenge we are facing here is to find a suitable
representation for X.

On the one hand, when encoding possibilities, we have to bear in mind that
at each time step, we might end up updating possibilities that were previously
calculated at any time in the past. As a result, to correctly and univocally encode
X, we need to keep track of the following information: (i) the time when a possi-
bility was created; (ii) the identifier of the possibility; and (iii) the eventuality
that created it. As a result, we represent X as the ASP tuple (t−1, W, E).

On the other hand, when encoding possible worlds, we can always be sure
that at each time step we are updating worlds that were created at precisely
that time. Thus, the ASP encoding of a possible world is slightly simplified and
we represent X with the ASP tuple (W, E).

Finally, the initial possibilities/worlds are calculated from the initial state
representation with the ASP rule w(0, W, null) :- w_init(W)., where null is a
placeholder that indicates that no action occurred before time t.

Example 1. The possibilities of Example 6 are represented in ASP as follows:(i) w1:
w(0, w1, null); (ii) w2: w(0, w2, null); and (iii) v3: w(1, (0, w1, null), e1). Again,
notice that, in the ASP encoding of possibilities, we are able to reuse previously
calculated information.

Similarly, the possible worlds of Example 3 are represented in ASP as:(i) v1:
w(1, (w1, null), e2); (ii) v2: w(1, (w2, null), e2); and (iii) v3: w(1, (w1, null), e1).

Information States and Accessibility Relations. Let w(Tw, W, Ew) and w(Tv, V, Ev)
be the ASP representations of two possibilities w and v. Since the possibilities
contained in the information states of w might have been calculated at any time
step in the past, in order to encode the fact that v ∈ w(i) (where i ∈ AG), we
need to keep track of the time when v was created. As a result, the resulting
encoding is given by the ASP predicate r(Tw, W, Ew, Tv, V, Ev, I).

Let now w(Tw, W, Ew) and w(Tv, V, Ev) refer to two possible worlds w and v.
When representing accessibility relations, we can always be sure that when wRiv,
the ASP representation of the worlds w and v share the same time value (i.e.,
Tw = Tv). Thus, we can simplify the encoding as follows: r(Tw, W, Ew, V, Ev, I).

Example 2. The information states of Example 6 are represented in ASP as
follows (we do not further expand the information states of w1 and w2 as they
refer to previously calculated information):
– v3∈v3(a): r(1, (0, w1, null), e1, 1, (0, w1, null), e1, a);
– w1∈v3(b): r(1, (0, w1, null), e1, 0, w1, null, b); and
– w2∈v3(b): r(1, (0, w1, null), e1, 0, w2, null, b).
The accessibility relations of Example 3 are represented in ASP as follows:

6 A. Burigana et al.

– v3Rav3: r(1, (w1, null), e1, (w1, null), e1, a);
– v3Rbv1: r(1, (w1, null), e1, (w1, null), e2, b);
– v3Rbv2: r(1, (w1, null), e1, (w2, null), e2, b); and
– vxRivy: r(1, (wx, null), e2, (wy, null), e2, i), for each x, y ∈ {1, 2} and i ∈
{a, b}.

Valuations. For each atom P, we encode the fact that P is true in the possibil-
ity/world w(t, W, E) with the ASP predicate v(t, W, E, P). We only represent true
atoms. The initial valuation is calculated from the initial state representation
with the ASP rule v(0, W, null, P) :- v_init(W, P).
Designated Possibilities and Worlds. A designated possibility/world is rep-
resented by the ASP predicate dw(t, W, E), where variables t, W and E have the
same meaning as in w(t, W, E). The initial designated possibilities/worlds are cal-
culated from the initial state representation with the ASP rule dw(0, W, null) :-
dw_init(W).

B.5 Truth Conditions

For space constraints, we abbreviate the representation Tx, X, Ex of a possibil-
ity/world as X̄. Truth conditions of formulae are encoded by predicate holds(t, W, E, F),
defined by induction on the structure of formulae as follows:

holds(W̄, P) :- v(W̄, P), atom(P).
holds(W̄, neg(F)) :- not holds(W̄, F).
holds(W̄, and(F1, F2)):- holds(W̄, F1), holds(W̄, F2).
holds(W̄, dia(AG, F)) :- r(W̄, V̄, AG), holds(V̄, F).

B.6 Update Operators

We now describe the ASP encodings of the update operators. As the encodings
differ, we present them individually.
Union Update. Let the ASP representations of a possibility spectrum W at
time t and of an eventuality spectrum ACT be given. We now show how the
encoding of the update W′ = W ∪× E is obtained. We adopt again the short
representation for possibilities/worlds (X̄). We point out that the following ASP
rules have a one-to-one correspondence with Definition 19. First, the designated
possibilities of W′ are determined by the following ASP rules:

dw(t, W̄, E):- dw(W̄), de(ACT, E), pre(ACT, E, PRE),
holds(W̄, PRE).

To describe how possibilities are updated, we need the following ASP predi-
cate:

qt(t, E, F, I):- q(ACT, E, F, GR), obs(t, I, GR).
That is, we evaluate the observability conditions of each agent to determine
the information states of the action. From this, we can obtain all the updated
possibilities recursively:

w(t, W̄, E):- dw(t, W̄, E), de(ACT, E).
w(t, W̄, E):- w(t, V̄, F), pre(ACT, E, PRE), -idle(ACT, E),

r(V̄, W̄, I), qt(t, F, E, I), holds(W̄, PRE).

delphic: Practical DEL Planning via Possibilities (Supplementary Material) 7

The first rule states that a designated possibility is a possibility. Let now v′ =
v ∪× f. Then, the second rule states that for any w and e such that w ∈ v(i),
e ∈ f(i) and w |= e(pre), we create w′ = w ∪× e. Notice that we require that the
eventuality e is not idle. An eventuality/event is idle when its precondition is
> and when its postconditions are the identity function. In this way, we do not
copy redundant information.

Let now W̄′ and V̄′ stand for t, W̄, E and t, V̄, F, respectively, and let Ū stand
for Tu, Ū, Eu. We encode information states as follows:

r(W̄′, V̄′, I):- r(W̄, V̄, I), qt(t, E, F, I).
r(W̄′, Ū, I):- r(W̄, Ū, I), qt(t, E, F, I), Tu≤t, idle(ACT, F).

The first rule states that if w′ = w ∪× e and v′ = v ∪× f are both created at time t
and it holds that v ∈ w(i) and f ∈ e(i), then v′ ∈ w′(i). The second rule states
that if w′ = w∪× e is created at time t and it holds that u ∈ w(i) and there exists
an eventuality f such that f ∈ e(i) and u = u ∪× f, then u ∈ w′(i). In this way, we
are able to reuse previously calculated information when encoding information
states of possibilities.

Finally, we encode the valuation of atoms as follows:
v(W̄′, P):- post(ACT, E, P, POST), holds(W̄, POST).
v(W̄′, P):- inertia(ACT, E, P), v(W̄, P).

The first rule states that if w |= e(p), then w′(p)=1. The second rule states that
if there are no postconditions associated to an atom (represented by the ASP
predicate inertia), then in w′ we keep the truth value assigned to p in w.
Product Update. Let the ASP representations of a MPKM (M,Wd) at time
t and of a MPEM (E , Ed) be given. The following ASP rules have a one-to-one
correspondence with Definition 6. Designated worlds and valuation of atoms are
defined in the same way as in the previous case. As above, let W̄′ and V̄′ stand for
t, W̄, E and t, V̄, F, respectively. Then, updated possible worlds and accessibility
relations are encoded as:

w(t, W̄, E) :- w(W̄), e(ACT, E), holds(W̄, PRE).
r(W̄′, V̄′, I):- r(W̄, V̄, I), qt(t, E, F, I).

B.7 Epistemic Planning Domains

We overview the planning domains used for the evaluation.
Assemble Line (AL): there are two agents, each responsible for processing
a different part of a product. Each agent can fail in processing its part and
can inform the other agent of the status of her task. The agents can decide to
assemble the product or to restart the process, depending on their knowledge
about the product status. This domain is parametrized on the maximum modal
depth d of formulae that appear in the action descriptions. The goal in this
domain is fixed, i.e., the agents must assemble the product. The aim of this
domain is to analyze the impact of the modal depth both in terms of grounding
and solving performances.
Coin in the Box (CB): this is a generalization of the domain presented in
Example 1. Three agents are in a room where a closed box contains a coin. None
of them knows whether the coin lies heads or tails up. To look at the coin, the

8 A. Burigana et al.

agents need to first open the box. Agents can be attentive or distracted: only
attentive agents are able to see what actions are executed. Moreover, agents can
signal others to make them attentive and can also distract them. The goal is for
one or more agents to learn the coin position.
Collaboration and Communication (CC): n≥2 agents move along a corri-
dor with k≥2 rooms in which m≥1 boxes are located. Whenever an agent enters
a room, it can determine whether a box is there. Agents can then communicate
information about the position of the boxes to each other. The goal is to have
some agent learn the position of one or more boxes and to know what other
agents have learnt.
Grapevine (Gr): n≥2 agents can move along a corridor with 2 rooms and
share their own “secret” to agents in the same room. The goal requires agents to
know the secret of one or more agents and to hide their secret to others.
Selective Communication (SC): n≥2 agents can move along a corridor with
k≥2 rooms. The agents might share some information, represented by an atom q.
In each room, only a certain subset of agents is able to listen to what others share.
The goal requires for some specific subset of agents to know the information and
to hide it to others.

C Graphical Comparison

We briefly report a concrete example on the succinctness of the possibility-based
representation, compared to the Kripke-based one (Figures 1 and 2). The figures
were generated by our tool. As you can see, even for small plans of length 5, the
delphic semantics provide a much more succinct representation. Specifically, in
Figure 1 we obtain a total of 15 possibilities, while in Figure 2 we obtain 126
possible worlds. This clearly confirms the benefits of the delphic semantics.

s0

s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * signal_a_b

s4 = s3 * peek_a s5 = s4 * shout_tail_a

w0 a, b, cw1
a, b, c

a, b, c

w2

bb

a, c w3
a, c

bb

a, c w4

bb

a, c w5
a, c

bb

a, c w6

bb

a, c w7
c

bb

a, c

w10

c c

a

w8

b

w9

b

cc

a, b
a, b

cc

a, b

w11 a, b, c

w12

b

a, c w13

c

a, b

w14

c b

a

w0 - looking_a, -looking_b, -looking_c, -opened, tail

w1 - looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, sig) looking_a, -looking_b, looking_c, -opened, tail

w3 (w1, sig) looking_a, -looking_b, looking_c, -opened, -tail

w4 (w2, sig) looking_a, -looking_b, looking_c, opened, tail

w5 (w3, sig) looking_a, -looking_b, looking_c, opened, -tail

w6 (w4, sig) looking_a, -looking_b, looking_c, opened, tail

w7 (w5, tau) looking_a, -looking_b, looking_c, opened, -tail

w8 (w0, sig) looking_a, looking_b, -looking_c, -opened, tail

w9 (w1, sig) looking_a, looking_b, -looking_c, -opened, -tail

w10 (w6, sig) looking_a, looking_b, looking_c, opened, tail

w11 (w0, sig) looking_a, -looking_b, -looking_c, -opened, tail

w12 (w6, sig) looking_a, -looking_b, looking_c, opened, tail

w13 (w8, sig) looking_a, looking_b, -looking_c, -opened, tail

w14 (w10, sig) looking_a, looking_b, looking_c, opened, tail

Fig. 1: Graphical representation of a sequence of 5 actions using delphic.

delphic: Practical DEL Planning via Possibilities (Supplementary Material) 9

s0 s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * peek_a
s4 = s3 * signal_a_b

s5 = s4 * shout_tail_a

w0 a, b, c

w1

a, b, c

a, b, c

w2 a, b, c

w4

a, b, c

a, b, c

w3

b

b

a, c

w5

a, c

b

b

a, c

w6 a, b, c

w10

a, b, c

a, b, c

w7

b

b

a, c

w11

a, c

b

b

a, c

w8

b

b

a, c

w12

a, c

b

b

a, c

w9

b

b

a, c

w13

a, c

b

b

a, c

w14 a, b, c

w22

a, b, c

a, b, c

w15

b

b

a, c

w23

c

b

b

a, c

w16

b

b

a, c

w24

a, c

b

b

a, c

w17

b

b

a, c

w25

c

b

b

a, c

w18

b

b

a, c

w26

a, c

b

b

a, c

w19

b

b

a, c

w27

c

b

b

a, c

w20

b

b

a, c

w28

a, c

b

b

a, c

w21

b

b

a, c

w29

c

b

b

a, c

w30 a, b, c

w46

a, b, c

a, b, c

w31

c

c

a, b

w47

a, b

c

c

a, b

w32

b

b

a, c

w48

c

b

b

a, c

w33

b

b

c

c

a

w34

b

b

a, c

w50

a, c

b

b

a, c

w35

b

b

c

c

a

w51

a

b

b

c

c

a

w36

b

b

a, c

w52

c

b

b

a, c

w37

b

b

c

c

a

w38

b

b

a, c

w54

a, c

b

b

a, c

w39

b

b

c

c

a

w55

a

b

b

c

c

a

w40

b

b

a, c

w56

c

b

b

a, c

w41

b

b

c

c

a

w42

b

b

a, c

w58

a, c

b

b

a, c

w43

b

b

c

c

a

w59

a

b

b

c

c

a

w44

b

b

a, c

w60

c

b

b

a, c

w45

b

b

c

c

a w49

b

b

c

c

a w53

b

b

c

c

aw57

b

b

c

c

aw61

b

b

c

c

a w100 a

w64

b

w96

b w66

c

w98

c

w101 a

w97

b

w99

c

w70 a, c

w102

a, c

w62

b

w94

b

a, c

b

b

w103 a, c

w95

b

w72

c

c

a

w104

a

b

b c

c

a

b

b

w105

c

a

b

w74 a, c

w106

c

b

b

a, c

b

b

w107 a, c

b

w108

c

c

a

b

b

w109

c

a

b

w78 a, c

w110

a, c

b

b

a, c

b

b

w111 a, c

b

w80

c

c

a

w112

a

b

b c

c

a

b

b

w113

c

a

b

w82 a, c

w114

c

b

b

a, c

b

b

w115 a, c

b

w116

c

c

a

b

b

w117

c

a

b

w86 a, c

w118

a, c

b

b

a, c

b

b

w119 a, c

b

w88

c

c

a

w120

a

b

bc

c

a

b

b

w121

c

a

b

w90 a, c

w122

c

b

b

a, c

b

b

w123 a, c

b

w124

c

c

a

b

b

w125

c

a

b

a, b, c

a, b, c

a, b, c

w63 a, b, c

c

c

a, b

a, b

c

c

a, b

w65

c

a, b

b

b

a, c

c

b

b

a, c

w67

b

a, c w68

b

b

c

c

a

w69

bc

a

w71

b

a, c

w73

b c

a

w75

b

a, c w76

c

c

b

b

a

w77

b c

a

w79

b

a, c

w81

bc

a

w83

b

a, c w84

c

c

b

b

a

w85

bc

a

w87

b

a, c

w89

b c

a

w91

b

a, c w92

c

c

b

b

a

w93

bc

a

a, b, c

c

a, b

b

a, c

w0 - looking_a, -looking_b, -looking_c, -opened, tail

w1 - looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, eps) looking_a, -looking_b, -looking_c, -opened, tail

w3 (w0, sig) looking_a, -looking_b, looking_c, -opened, tail

w4 (w1, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w5 (w1, sig) looking_a, -looking_b, looking_c, -opened, -tail

w6 (w2, eps) looking_a, -looking_b, -looking_c, -opened, tail

w7 (w2, sig) looking_a, -looking_b, -looking_c, opened, tail

w8 (w3, eps) looking_a, -looking_b, looking_c, -opened, tail

w9 (w3, sig) looking_a, -looking_b, looking_c, opened, tail

w10 (w4, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w11 (w4, sig) looking_a, -looking_b, -looking_c, opened, -tail

w12 (w5, eps) looking_a, -looking_b, looking_c, -opened, -tail

w13 (w5, sig) looking_a, -looking_b, looking_c, opened, -tail

w14 (w6, eps) looking_a, -looking_b, -looking_c, -opened, tail

w15 (w6, sig) looking_a, -looking_b, -looking_c, -opened, tail

w16 (w7, eps) looking_a, -looking_b, -looking_c, opened, tail

w17 (w7, sig) looking_a, -looking_b, -looking_c, opened, tail

w18 (w8, eps) looking_a, -looking_b, looking_c, -opened, tail

w19 (w8, sig) looking_a, -looking_b, looking_c, -opened, tail

w20 (w9, eps) looking_a, -looking_b, looking_c, opened, tail

w21 (w9, sig) looking_a, -looking_b, looking_c, opened, tail

w22 (w10, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w23 (w10, tau) looking_a, -looking_b, -looking_c, -opened, -tail

w24 (w11, eps) looking_a, -looking_b, -looking_c, opened, -tail

w25 (w11, tau) looking_a, -looking_b, -looking_c, opened, -tail

w26 (w12, eps) looking_a, -looking_b, looking_c, -opened, -tail

w27 (w12, tau) looking_a, -looking_b, looking_c, -opened, -tail

w28 (w13, eps) looking_a, -looking_b, looking_c, opened, -tail

w29 (w13, tau) looking_a, -looking_b, looking_c, opened, -tail

w30 (w14, eps) looking_a, -looking_b, -looking_c, -opened, tail

w31 (w14, sig) looking_a, looking_b, -looking_c, -opened, tail

w32 (w15, eps) looking_a, -looking_b, -looking_c, -opened, tail

w33 (w15, sig) looking_a, looking_b, -looking_c, -opened, tail

w34 (w16, eps) looking_a, -looking_b, -looking_c, opened, tail

w35 (w16, sig) looking_a, looking_b, -looking_c, opened, tail

w36 (w17, eps) looking_a, -looking_b, -looking_c, opened, tail

w37 (w17, sig) looking_a, looking_b, -looking_c, opened, tail

w38 (w18, eps) looking_a, -looking_b, looking_c, -opened, tail

w39 (w18, sig) looking_a, looking_b, looking_c, -opened, tail

w40 (w19, eps) looking_a, -looking_b, looking_c, -opened, tail

w41 (w19, sig) looking_a, looking_b, looking_c, -opened, tail

w42 (w20, eps) looking_a, -looking_b, looking_c, opened, tail

w43 (w20, sig) looking_a, looking_b, looking_c, opened, tail

w44 (w21, eps) looking_a, -looking_b, looking_c, opened, tail

w45 (w21, sig) looking_a, looking_b, looking_c, opened, tail

w46 (w22, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w47 (w22, sig) looking_a, looking_b, -looking_c, -opened, -tail

w48 (w23, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w49 (w23, sig) looking_a, looking_b, -looking_c, -opened, -tail

w50 (w24, eps) looking_a, -looking_b, -looking_c, opened, -tail

w51 (w24, sig) looking_a, looking_b, -looking_c, opened, -tail

w52 (w25, eps) looking_a, -looking_b, -looking_c, opened, -tail

w53 (w25, sig) looking_a, looking_b, -looking_c, opened, -tail

w54 (w26, eps) looking_a, -looking_b, looking_c, -opened, -tail

w55 (w26, sig) looking_a, looking_b, looking_c, -opened, -tail

w56 (w27, eps) looking_a, -looking_b, looking_c, -opened, -tail

w57 (w27, sig) looking_a, looking_b, looking_c, -opened, -tail

w58 (w28, eps) looking_a, -looking_b, looking_c, opened, -tail

w59 (w28, sig) looking_a, looking_b, looking_c, opened, -tail

w60 (w29, eps) looking_a, -looking_b, looking_c, opened, -tail

w61 (w29, sig) looking_a, looking_b, looking_c, opened, -tail

w62 (w30, eps) looking_a, -looking_b, -looking_c, -opened, tail

w63 (w30, sig) looking_a, -looking_b, -looking_c, -opened, tail

w64 (w31, eps) looking_a, looking_b, -looking_c, -opened, tail

w65 (w31, sig) looking_a, looking_b, -looking_c, -opened, tail

w66 (w32, eps) looking_a, -looking_b, -looking_c, -opened, tail

w67 (w32, sig) looking_a, -looking_b, -looking_c, -opened, tail

w68 (w33, eps) looking_a, looking_b, -looking_c, -opened, tail

w69 (w33, sig) looking_a, looking_b, -looking_c, -opened, tail

w70 (w34, eps) looking_a, -looking_b, -looking_c, opened, tail

w71 (w34, sig) looking_a, -looking_b, -looking_c, opened, tail

w72 (w35, eps) looking_a, looking_b, -looking_c, opened, tail

w73 (w35, sig) looking_a, looking_b, -looking_c, opened, tail

w74 (w36, eps) looking_a, -looking_b, -looking_c, opened, tail

w75 (w36, sig) looking_a, -looking_b, -looking_c, opened, tail

w76 (w37, eps) looking_a, looking_b, -looking_c, opened, tail

w77 (w37, sig) looking_a, looking_b, -looking_c, opened, tail

w78 (w38, eps) looking_a, -looking_b, looking_c, -opened, tail

w79 (w38, sig) looking_a, -looking_b, looking_c, -opened, tail

w80 (w39, eps) looking_a, looking_b, looking_c, -opened, tail

w81 (w39, sig) looking_a, looking_b, looking_c, -opened, tail

w82 (w40, eps) looking_a, -looking_b, looking_c, -opened, tail

w83 (w40, sig) looking_a, -looking_b, looking_c, -opened, tail

w84 (w41, eps) looking_a, looking_b, looking_c, -opened, tail

w85 (w41, sig) looking_a, looking_b, looking_c, -opened, tail

w86 (w42, eps) looking_a, -looking_b, looking_c, opened, tail

w87 (w42, sig) looking_a, -looking_b, looking_c, opened, tail

w88 (w43, eps) looking_a, looking_b, looking_c, opened, tail

w89 (w43, sig) looking_a, looking_b, looking_c, opened, tail

w90 (w44, eps) looking_a, -looking_b, looking_c, opened, tail

w91 (w44, sig) looking_a, -looking_b, looking_c, opened, tail

w92 (w45, eps) looking_a, looking_b, looking_c, opened, tail

w93 (w45, sig) looking_a, looking_b, looking_c, opened, tail

w94 (w46, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w95 (w46, tau) looking_a, -looking_b, -looking_c, -opened, -tail

w96 (w47, eps) looking_a, looking_b, -looking_c, -opened, -tail

w97 (w47, tau) looking_a, looking_b, -looking_c, -opened, -tail

w98 (w48, eps) looking_a, -looking_b, -looking_c, -opened, -tail

w99 (w48, tau) looking_a, -looking_b, -looking_c, -opened, -tail

w100 (w49, eps) looking_a, looking_b, -looking_c, -opened, -tail

w101 (w49, tau) looking_a, looking_b, -looking_c, -opened, -tail

w102 (w50, eps) looking_a, -looking_b, -looking_c, opened, -tail

w103 (w50, tau) looking_a, -looking_b, -looking_c, opened, -tail

w104 (w51, eps) looking_a, looking_b, -looking_c, opened, -tail

w105 (w51, tau) looking_a, looking_b, -looking_c, opened, -tail

w106 (w52, eps) looking_a, -looking_b, -looking_c, opened, -tail

w107 (w52, tau) looking_a, -looking_b, -looking_c, opened, -tail

w108 (w53, eps) looking_a, looking_b, -looking_c, opened, -tail

w109 (w53, tau) looking_a, looking_b, -looking_c, opened, -tail

w110 (w54, eps) looking_a, -looking_b, looking_c, -opened, -tail

w111 (w54, tau) looking_a, -looking_b, looking_c, -opened, -tail

w112 (w55, eps) looking_a, looking_b, looking_c, -opened, -tail

w113 (w55, tau) looking_a, looking_b, looking_c, -opened, -tail

w114 (w56, eps) looking_a, -looking_b, looking_c, -opened, -tail

w115 (w56, tau) looking_a, -looking_b, looking_c, -opened, -tail

w116 (w57, eps) looking_a, looking_b, looking_c, -opened, -tail

w117 (w57, tau) looking_a, looking_b, looking_c, -opened, -tail

w118 (w58, eps) looking_a, -looking_b, looking_c, opened, -tail

w119 (w58, tau) looking_a, -looking_b, looking_c, opened, -tail

w120 (w59, eps) looking_a, looking_b, looking_c, opened, -tail

w121 (w59, tau) looking_a, looking_b, looking_c, opened, -tail

w122 (w60, eps) looking_a, -looking_b, looking_c, opened, -tail

w123 (w60, tau) looking_a, -looking_b, looking_c, opened, -tail

w124 (w61, eps) looking_a, looking_b, looking_c, opened, -tail

w125 (w61, tau) looking_a, looking_b, looking_c, opened, -tail

Fig. 2: Graphical representation of a sequence of 5 actions using Kripke seman-
tics.

Assemble

|AG| |P| |W | |A| L d
Delphic Kripke

Time Atoms Time Atoms

2 4 4 6 5

2 2.560 59332 3.153 123780
3 2.621 60390 3.606 121194
4 2.913 61422 4.396 128644
5 3.117 62478 4.148 125708
6 3.304 63564 4.774 128328
7 3.410 64622 4.917 130464
8 3.372 65680 5.556 138372
9 3.566 66738 6.161 140804
10 3.739 67796 6.888 136576
24 13.103 108000 25.264 218362

Table 1: Results for AL.

D Full Experimental Results

We here report the complete tables with the results of our experimental evalua-
tions (Tables 1-5).

References

1. Burigana, A., Fabiano, F., Dovier, A., Pontelli, E.: Modelling multi-agent epistemic
planning in ASP. Theory Pract. Log. Program. 20(5), 593–608 (2020)

2. Fabiano, F., Burigana, A., Dovier, A., Pontelli, E.: EFP 2.0: A multi-agent epistemic
solver with multiple e-state representations. In: Beck, J.C., Buffet, O., Hoffmann, J.,
Karpas, E., Sohrabi, S. (eds.) Proceedings of the Thirtieth International Conference
on Automated Planning and Scheduling, Nancy, France, October 26-30, 2020. pp.
101–109. AAAI Press (2020)

10 A. Burigana et al.

Coin in the Box

|AG| |P| |W | |A| L d
delphic Kripke

Time Atoms Time Atoms

3 5 2 21

2 1 0.077 2459 0.098 3094
3 1 0.215 5828 0.231 8394
5 3 5.137 77310 7.014 122265
6 3 27.428 316840 54.091 586037
7 3 t.o. - t.o. -

Table 2: Results for CB.

3. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

4. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own asp-based
system?! Theory Pract. Log. Program. 23(1), 299–361 (2023)

delphic: Practical DEL Planning via Possibilities (Supplementary Material) 11

Collaboration and Communication

|AG| |P| |W | |A| L d
Delphic Kripke

Time Atoms Time Atoms

2 10 4 20

3 2 0.129 4579 0.186 8859
4 1 0.455 10900 0.532 25916
5 2 2.467 37882 3.599 98226
6 2 9.435 147183 25.365 385343
7 2 66.278 636799 254.544 1652783
8 2 t.o. - t.o. -

3 13 4 30

3 2 0.167 7112 0.328 13532
4 1 0.774 15873 0.958 37125
5 2 5.580 57033 9.321 147549
6 2 18.550 214086 78.667 557746
7 2 143.178 934859 t.o. -
8 2 t.o. - t.o. -

3 15 8 42

3 2 0.905 17288 1.153 36040
4 1 3.939 46741 4.392 114453
5 2 14.207 184241 85.423 477169
6 2 114.014 760234 465.422 1963514
7 2 t.o. - t.o. -
8 2 t.o. - t.o. -

2 14 9 28

3 2 0.541 13456 0.723 28514
4 1 2.778 39077 3.020 96399
5 2 12.418 152271 38.747 393337
6 2 57.073 650494 146.581 1681652
7 2 t.o. - t.o. -

2 17 18 40

3 2 2.688 39310 3.324 87272
4 1 7.849 128993 14.633 322395
5 2 52.642 535713 115.531 1376539
6 2 t.o. - t.o. -
7 2 t.o. - t.o. -

Table 3: Results for CC.

12 A. Burigana et al.

Grapevine

|AG| |P| |W | |A| L d
Delphic Kripke

Time Atoms Time Atoms

3 9 8 24

2 1 0.104 3644 0.165 9256
3 1 0.197 5385 0.892 28491
4 1 0.500 9294 4.142 98558
5 1 1.934 18691 44.456 372271
6 2 15.943 43315 t.o. -
7 2 52.829 107146 t.o. -

4 12 16 40

2 1 0.360 10684 0.810 32104
3 1 1.096 17182 6.613 109032
4 1 3.694 33024 41.454 412426
5 1 15.049 73698 t.o. -
6 2 87.727 184055 t.o. -
7 2 t.o. - t.o. -

5 15 32 60

2 1 1.153 33600 4.593 113362
3 1 3.695 58527 48.582 417771
4 1 9.469 123422 t.o. -
5 1 77.333 298973 t.o. -
6 2 t.o. - t.o. -
7 2 t.o. - t.o. -

Table 4: Results for Gr.

delphic: Practical DEL Planning via Possibilities (Supplementary Material) 13

Selective Communication

|AG| |P| |W | |A| L d
Delphic Kripke

Time Atoms Time Atoms

3 5 2 7

3 2 0.026 943 0.029 1848
5 1 0.111 5451 0.354 18231
6 3 0.190 7775 1.948 74916
8 3 2.063 62367 81.041 1318062

7 5 2 7
5 1 0.188 11342 0.545 30615
7 2 1.778 67906 20.629 579934
8 2 4.192 140081 179.118 2617071

8 11 2 13

9 1 0.236 10156 52.347 976904
10 2 0.339 14519 178.486 1036341
14 2 17.766 494657 t.o. -
15 2 16.430 481155 t.o. -

9 11 2 13

6 2 4.542 167342 9.196 414842
8 2 27.503 653357 t.o. -
9 2 94.207 1693676 t.o. -
12 2 t.o. - t.o. -

9 11 2 13

9 2 0.373 21893 29.649 494173
10 2 0.723 41257 195.693 1135358
13 2 1.989 95485 t.o. -
17 2 288.827 4023556 t.o. -

9 12 2 14

4 1 0.084 4712 0.143 12602
5 1 0.234 15034 0.848 49580
6 1 0.678 43058 3.560 212899
7 1 3.165 132163 27.126 1030477
8 1 15.983 393797 t.o. -
9 1 32.373 782700 t.o. -
10 1 129.964 2458577 t.o. -
11 1 289.298 4209828 t.o. -

Table 5: Results for SC.

