# A SEMANTIC APPROACH TO DECIDABILITY IN EPISTEMIC PLANNING

Alessandro Burigana Free University of Bozen-Bolzano, Italy

Paolo Felli University of Bologna, Italy

Marco Montali Free University of Bozen-Bolzano, Italy

Nicolas Troquard Free University of Bozen-Bolzano, Italy ECAI 2023 October 4 Krakóv, Poland

# DYNAMIC EPISTEMIC LOGIC

**Epistemic planning** is an enrichment of automated planning where the concept of **knowl-edge/belief** is taken into account.

### Example (Coin in the Box)

**Initial situation.** Anne, Bob and Carl are in a room. A coin placed inside a closed box. Everybody knows that the box is closed (c), but no one knows the position of the coin.

There are two possible situations:

- The coin lies heads up (h), and
- The coin lies tails up  $(\neg h)$ .

Goals can include epistemic conditions:

- Anne knows/believes that *h*,
- Bob knows/believes that Anne knows/believes whether h or not,
- Carl knows/believes that Anne does not know/believe whether h,
- Both Bob and Carl do not know/believe whether h.

## Dynamic Epistemic Logic

Let  $\mathcal{P}$  be a finite set of propositional atoms and  $\mathcal{AG} = \{1, \ldots, n\}$  a finite set of agents.

Definition (Language  $\mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}^{C}$ )

$$\varphi ::= p \mid \neg \phi \mid \phi \land \phi \mid \Box_i \phi \mid C_G \phi$$

### Example (Coin in the Box)

Let  $\mathcal{P} = \{c, h\}$  and  $\mathcal{AG} = \{Anne, Bob, Carl\}$ . We can state the conditions of our example as follows:

Initial conditions:

■ *C*<sub>A</sub><sub>G</sub>*c* 

Goal conditions:

 $\blacksquare \square_{Anne}h$ 

- $\blacksquare \square_{Bob}(\square_{Anne} h \lor \square_{Anne} \neg h)$
- $\blacksquare \Box_{Carl}(\neg \Box_{Anne}h \land \neg \Box_{Anne} \neg h)$
- $\bigwedge_{i \in \{\text{Bob}, Carl\}} (\neg \Box_i h \land \neg \Box_i \neg h)$

## A Very Expressive Semantics



Figure: Initial state.

**Epistemic states** (pointed Kripke models):

- Uncertainty
- Higher order knowledge/belief
- Nondeterminism

## A Very Expressive Semantics



Figure: Initial state.

### **Epistemic states** (pointed Kripke models):

- Uncertainty
- Higher order knowledge/belief
- Nondeterminism



**Figure:** Anne opens the box while only Bob is looking (Carl is distracted).

Actions (pointed event models):

- Epistemic and ontic change
- Partial observability
- Nondeterminism

Notoriously, the (epistemic) plan existence problem in the logic  $S5_n$  is undecidable.

 $\rightarrow$  Reduction to halting problem of Turing machines [BA11] and 2-counter machines [AB13].

Notoriously, the (epistemic) plan existence problem in the logic  $S5_n$  is undecidable.

 $\rightarrow$  Reduction to halting problem of Turing machines [BA11] and 2-counter machines [AB13].

Many existing approaches to decidability rely on syntactical restrictions (modal depth):

| d <sub>pre</sub> | d <sub>post</sub> | Plan existence problem   |
|------------------|-------------------|--------------------------|
| 0                | -                 | PSPACE-complete [CMS16]  |
| 1                | -                 | Unknown [CMS16]          |
| 2                | -                 | Undecidable [CMS16]      |
| 0                | 0                 | Decidable [YWL13; AMP14] |
| 1                | 0                 | Undecidable [BA11]       |

Notoriously, the (epistemic) plan existence problem in the logic  $S5_n$  is undecidable.

 $\rightarrow$  Reduction to halting problem of Turing machines [BA11] and 2-counter machines [AB13].

Many existing approaches to decidability rely on syntactical restrictions (modal depth):

| d <sub>pre</sub> | d <sub>post</sub> | Plan existence problem   |
|------------------|-------------------|--------------------------|
| 0                | -                 | PSPACE-complete [CMS16]  |
| 1                | -                 | Unknown [CMS16]          |
| 2                | -                 | Undecidable [CMS16]      |
| 0                | 0                 | Decidable [YWL13; AMP14] |
| 1                | 0                 | Undecidable [BA11]       |

Let's try a different approach!

## THE SEMANTIC APPROACH

We switch our attention to the logic of the plan existence problem.

 $\rightarrow\,$  Given a logic  $\mathcal L,$  is the plan existence problem in  $\mathcal L$  decidable?

We switch our attention to the logic of the plan existence problem.

 $\rightarrow\,$  Given a logic  $\mathcal L,$  is the plan existence problem in  $\mathcal L$  decidable?

Already explored for well known logics:

| Logic                                | Plan existence problem |
|--------------------------------------|------------------------|
| $K_n, KT_n, K4_n, K45_n, S4_n, S5_n$ | Undecidable [AB13]     |

We switch our attention to the logic of the plan existence problem.

 $\rightarrow\,$  Given a logic  $\mathcal L,$  is the plan existence problem in  $\mathcal L$  decidable?

Already explored for well known logics:

| Logic                                                                                                     | Plan existence problem |
|-----------------------------------------------------------------------------------------------------------|------------------------|
| K <sub>n</sub> , KT <sub>n</sub> , K4 <sub>n</sub> , K45 <sub>n</sub> , S4 <sub>n</sub> , S5 <sub>n</sub> | Undecidable [AB13]     |

Let's push the envelope!

Agents have too much reasoning power: they can **reason unboundedly** about each other's knowledge.

 $\rightarrow$  This issue has been exploited in many undecidability results [BA11; AB13].

Agents have too much reasoning power: they can **reason unboundedly** about each other's knowledge.

 $\rightarrow$  This issue has been exploited in many undecidability results [BA11; AB13].

We address this by introducing a novel interaction axiom to the logic  $S5_n$ :

Knowledge Commutativity ${\sf C} \quad \Box_i \Box_j \phi \to \Box_j \Box_i \phi$ 

We call  $C-S5_n$  the logic  $S5_n$  augmented with axiom **C**.

Agents have too much reasoning power: they can **reason unboundedly** about each other's knowledge.

 $\rightarrow$  This issue has been exploited in many undecidability results [BA11; AB13].

We address this by introducing a novel interaction axiom to the logic  $S5_n$ :

Knowledge Commutativity

$$\mathbf{C} \quad \Box_i \Box_j \phi \to \Box_j \Box_i \phi$$

We call  $C-S5_n$  the logic  $S5_n$  augmented with axiom **C**.

- Principle of *commutativity* in the knowledge that agents have about the knowledge of others.
- Reasonable assumption in several *cooperative multi-agent planning tasks* [journals/csur/Torreno2017] where agents are able to communicate or monitor each other.

C-S5<sub>n</sub> admits a finitary non-fixpoint characterization of common knowledge:

## **Theorem** Let $G = \{i_1, ..., i_m\}$ , with $G \subseteq AG$ and $m \ge 2$ . In C-S5<sub>n</sub>, for any $\varphi$ , the formula $\Box_{i_1} ... \Box_{i_m} \varphi \leftrightarrow C_G \varphi$ is a theorem.

Often, common knowledge is regarded as "too strong". Instead, in C-S5<sub>n</sub> the power of common knowledge is more controlled.

Application to the Coordinated Attack Problem: the two generals realize that they can not achieve common knowledge about the plan for the attack. A very helpful property of  $C-S5_n$ -states:

#### Lemma

Let  $(M, W_d)$  be a bisimulation-contracted C-S5<sub>n</sub>-state, with M = (W, R, V). Then, |W| is bounded in n and  $|\mathcal{P}|$ .

This entails that there exist **finitely many**  $C-S5_n$ -states (modulo bisimulation-contraction). We can perform a BFS visit.

#### Theorem

The plan existence problem in  $C-S5_n$  is decidable.

## **Epistemic Planning Systems**

Two well-known systems fall under the logic C-S5<sub>n</sub>: the **S5**<sub>n</sub>-fragment of  $mA^*$  and the one from Kominis and Geffner (*KG*).



**Figure:** The systems  $mA^*$  (top) and **KG** (bottom).

### Corollary

The plan existence problem in  $S5_n$ -m $A^*$  and KG is decidable.

# GENERALIZED KNOWLEDGE COMMUTATIVITY

Let b > 1 be a fixed integer constant:



We call  $\mathbf{C}^{b}$ -**S5**<sub>n</sub> the logic S5<sub>n</sub> augmented with axiom  $\mathbf{C}^{b}$ .

Theorem

For any b > 1, the plan existence problem in  $C^{b}$ - $S5_{2}$  is decidable.

#### Theorem

For any n > 2 and b > 1, the plan existence problem in  $C^{b}$ -S5<sub>n</sub> is undecidable.

Let  $1 < \ell \leq n$  be a fixed integer constant, let  $\langle i_1, \ldots, i_\ell \rangle$  be a repetition-free sequence of agents and let  $\pi$  be any of its permutations:

Weak Commutativity

$$\textbf{wC}_{\ell} \quad \Box_{i_{1}} \dots \Box_{i_{\ell}} \phi \rightarrow \Box_{\pi_{i_{1}}} \dots \Box_{\pi_{i_{\ell}}} \phi$$

We call  $wC_{\ell}$ -S5<sub>n</sub> the logic S5<sub>n</sub> augmented with axiom  $wC_{\ell}$  (for all  $\pi$ ).

#### Theorem

For any n > 1 and  $1 < l \leq n$ , the plan existence problem in  $wC_{l}$ -S5<sub>n</sub> is decidable.

| Logic                                                                                                     | Plan existence problem |
|-----------------------------------------------------------------------------------------------------------|------------------------|
| K <sub>n</sub> , KT <sub>n</sub> , K4 <sub>n</sub> , K45 <sub>n</sub> , S4 <sub>n</sub> , S5 <sub>n</sub> | Undecidable [AB13]     |
| $C^{b}-S5_{n} (n > 2)$                                                                                    | Undecidable            |
| C <sup>b</sup> -S5 <sub>2</sub>                                                                           |                        |
| wC <sub>l</sub> -S5 <sub>n</sub>                                                                          | Decidable              |
| C-S5 <sub>n</sub>                                                                                         |                        |

# CONCLUSIONS

To summarize:

- We proposed a novel semantic approach to decidability in DEL-planning.
- We showed how one can effectively obtain **decidable fragments** by augmenting the logic S5<sub>n</sub> with interaction axioms.
- We showed that two well-known epistemic planning systems fall within our logic, hence proving their decidability.

Future works:

- Analyze complexity of DEL-planning under commutativity.
- Explore more axioms, both on top of  $S5_n$  and  $KD45_n$ .

# THANK YOU Questions?