A SEMANTIC APPROACH TO DECIDABILITY IN EPISTEMIC PLANNING

Alessandro Burigana Free University of Bozen-Bolzano, Italy

Paolo Felli University of Bologna, Italy

Marco Montali Free University of Bozen-Bolzano, Italy

Nicolas Troquard Free University of Bozen-Bolzano, Italy

ECAI 2023 October 4 Krakóv, Poland

[DYNAMIC EPISTEMIC LOGIC](#page-0-0)

Epistemic planning is an enrichment of automated planning where the concept of knowledge/belief is taken into account.

Example (Coin in the Box)

Initial situation. Anne, Bob and Carl are in a room. A coin placed inside a closed box. Everybody knows that the box is closed (c) , but no one knows the position of the coin.

There are two possible situations:

- \blacksquare The coin lies heads up (h) , and
- The coin lies tails up $(\neg h)$.

Goals can include epistemic conditions:

- Anne knows/believes that h ,
- **Bob** knows/believes that Anne knows/believes whether h or not.
- Carl knows/believes that Anne does not know/believe whether h ,
- Both Bob and Carl do not know/believe whether h.

Dynamic Epistemic Logic

Let P be a finite set of propositional atoms and $AG = \{1, \ldots, n\}$ a finite set of agents.

Definition (Language $\mathcal{L}_{\mathcal{P},\mathcal{A}\mathcal{G}}^C$)

$$
\phi ::= \rho \mid \neg \phi \mid \phi \land \phi \mid \Box_i \phi \mid \mathcal{C}_G \phi
$$

Example (Coin in the Box)

Let $\mathcal{P} = \{c, h\}$ and $\mathcal{A}\mathcal{G} = \{Anne, Bob, Carl\}$. We can state the conditions of our example as follows:

Initial conditions:

 $\bigwedge_{i\in\mathcal{AG}}(\neg\Box_i h\wedge\neg\Box_i\neg h)$

 C_{AGC}

Goal conditions:

 \Box Anneh

- \Box _{Bob}(\Box _{Anne} h ∨ \Box _{Anne} \Box h)
- \Box Carl $(\Box_{\Delta nne} h \wedge \Box_{\Delta nne} h)$
- $\bigwedge_{i\in\{Bob, Carl\}} (\neg \Box_i h \wedge \neg \Box_i \neg h)$

A Very Expressive Semantics

Figure: Initial state.

Epistemic states (pointed Kripke models):

- **Uncertainty**
- Higher order knowledge/belief
- **Nondeterminism**

A Very Expressive Semantics

Figure: Initial state.

Epistemic states (pointed Kripke models):

- **Uncertainty**
- Higher order knowledge/belief
- **Nondeterminism**

Figure: Anne opens the box while only Bob is looking (Carl is distracted).

Actions (pointed event models):

- **Epistemic and ontic change**
- **Partial observability**
- **Nondeterminism**

Notoriously, the (epistemic) plan existence problem in the logic $S5_n$ is undecidable.

 \rightarrow Reduction to halting problem of Turing machines [\[BA11\]](#page-0-0) and 2-counter machines [\[AB13\]](#page-0-0).

Notoriously, the (epistemic) plan existence problem in the logic S_5 is undecidable.

 \rightarrow Reduction to halting problem of Turing machines [\[BA11\]](#page-0-0) and 2-counter machines [\[AB13\]](#page-0-0).

Many existing approaches to decidability rely on syntactical restrictions (modal depth):

Notoriously, the (epistemic) plan existence problem in the logic S_5 is undecidable.

 \rightarrow Reduction to halting problem of Turing machines [\[BA11\]](#page-0-0) and 2-counter machines [\[AB13\]](#page-0-0).

Many existing approaches to decidability rely on syntactical restrictions (modal depth):

Let's try a different approach!

[THE SEMANTIC APPROACH](#page-0-0)

We switch our attention to the logic of the plan existence problem.

 \rightarrow Given a logic \mathcal{L} , is the plan existence problem in \mathcal{L} decidable?

We switch our attention to the logic of the plan existence problem.

 \rightarrow Given a logic \mathcal{L} , is the plan existence problem in \mathcal{L} decidable?

Already explored for well known logics:

We switch our attention to the **logic** of the plan existence problem.

 \rightarrow Given a logic \mathcal{L} , is the plan existence problem in \mathcal{L} decidable?

Already explored for well known logics:

Let's push the envelope!

Agents have too much reasoning power: they can reason unboundedly about each other's knowledge.

 \rightarrow This issue has been exploited in many undecidability results [\[BA11; AB13\]](#page-0-0).

Agents have too much reasoning power: they can reason unboundedly about each other's knowledge.

 \rightarrow This issue has been exploited in many undecidability results [\[BA11; AB13\]](#page-0-0).

We address this by introducing a novel interaction axiom to the logic $S5_n$:

Knowledge Commutativity **C** $\Box_i \Box_i \varphi \rightarrow \Box_i \Box_i \varphi$

We call $C-55_n$, the logic 55_n augmented with axiom C.

Agents have too much reasoning power: they can reason unboundedly about each other's knowledge.

 \rightarrow This issue has been exploited in many undecidability results [\[BA11; AB13\]](#page-0-0).

We address this by introducing a novel interaction axiom to the logic $S5_n$:

Knowledge Commutativity

$$
\boldsymbol{C} \quad \Box_i \Box_j \phi \to \Box_j \Box_i \phi
$$

We call $C-55_n$, the logic 55_n augmented with axiom C.

- **Principle of** *commutativity* in the knowledge that agents have about the knowledge of others.
- Reasonable assumption in several cooperative multi-agent planning tasks [journals/csur/Torreno2017] where agents are able to communicate or monitor each other.

C-S5ⁿ admits a finitary non-fixpoint characterization of common knowledge:

Theorem Let $G = \{i_1, \ldots, i_m\}$, with $G \subset \mathcal{AG}$ and $m \geq 2$. In C-S5_n, for any φ , the formula $\Box_{i_1} \dots \Box_{i_m} \varphi \leftrightarrow C_G \varphi$ is a theorem.

Often, common knowledge is regarded as "too strong". Instead, in C-S5_n the power of common knowledge is more controlled.

Application to the Coordinated Attack Problem: the two generals realize that they can not achieve common knowledge about the plan for the attack.

A very helpful property of $C-55_n$ -states:

Lemma

Let (M, W_d) be a bisimulation-contracted C-S5_n-state, with $M = (W, R, V)$. Then, $|W|$ is bounded in n and $|\mathcal{P}|$.

This entails that there exist finitely many $C-S5_n$ -states (modulo bisimulation-contraction). We can perform a BFS visit.

Theorem

The plan existence problem in $C-55_n$ is decidable.

Epistemic Planning Systems

Two well-known systems fall under the logic C-S5_n: the $\mathsf{S5}_n$ -f<mark>ragment o</mark>f $m\mathcal{A}^*$ and the one from Kominis and Geffner (KG) .

Figure: The systems mA^* (top) and KG (bottom).

Corollary

The plan existence problem in $S5_n$ -m A^* and KG is **decidable**.

[GENERALIZED KNOWLEDGE COMMUTATIVITY](#page-0-0)

Let $b > 1$ be a fixed integer constant:

We call ${\sf C}^{b}$ -S5 $_{n}$ the logic S5 $_{n}$ augmented with axiom ${\sf C}^{b}.$

Theorem

For any $b > 1$, the plan existence problem in C^b - $S5_2$ is **decidable**.

Theorem

For any $n > 2$ and $b > 1$, the plan existence problem in C^b -55_n is undecidable.

Let $1 < \ell \le n$ be a fixed integer constant, let $\langle i_1, \ldots, i_\ell \rangle$ be a repetition-free sequence of agents and let π be any of its permutations:

Weak Commutativity

$$
\textbf{w} C_\ell \quad \Box_{i_1} \ldots \Box_{i_\ell} \phi \rightarrow \Box_{\pi_{i_1}} \ldots \Box_{\pi_{i_\ell}} \phi
$$

We call wC_{ℓ} -S5_n the logic S5_n augmented with axiom wC_{ℓ} (for all π).

Theorem

For any $n > 1$ and $1 < \ell \le n$, the plan existence problem in wC_{ℓ} -**S5**_n is **decidable**.

[CONCLUSIONS](#page-0-0)

To summarize:

- We proposed a novel semantic approach to decidability in DEL-planning.
- We showed how one can effectively obtain decidable fragments by augmenting the logic S_5 , with interaction axioms.
- We showed that two well-known epistemic planning systems fall within our logic, hence proving their decidability.

Future works:

- Analyze complexity of DEL-planning under commutativity.
- Explore more axioms, both on top of 55_n and KD45_n.

THANK YOU Questions?