BETTER BOUNDED BISIMULATION CONTRACTIONS

Thomas Bolander Technical University of Denmark, Denmark

Alessandro Burigana Free University of Bozen-Bolzano, Italy AiML 2024 August 23rd Prague, Czech Republic

Example (Standard *k*-Contractions are Not Minimal)

$$\lfloor \mathcal{M} \rfloor_{k} \cong \mathcal{M} = \bigotimes_{\substack{w_{k}: p \\ w_{k}: p \\ w_{k$$

Figure: Chain model \mathcal{M} and standard k-contraction (left) and minimal k-contraction (right).

In this presentation:

- We give an improved definition: rooted *k*-contractions
- We prove correctness and minimality
- We show an exponential succinctness result

Let $\mathcal P$ be a countable set of atomic propositions and $\mathcal I$ a finite set of modality indices.

Definition (Language \mathcal{L} of Multi-Modal Logic)

 $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box_i \varphi$, (where $p \in \mathcal{P}$ and $i \in \mathfrak{I}$)

Definition (Pointed Model)

A pointed model is a pair (M, w_d) , where w_d is the designated world and M = (W, R, V):

- $W \neq \emptyset$ is a finite set of (possible) worlds
- $R: \mathcal{I} \to 2^{W \times W}$ assigns to each $i \in \mathcal{I}$ an accessibility relation R_i
- $V: \mathcal{P} \to 2^W$ is a valuation function assigning to each atom a set of worlds

Definition (Bounded Bisimulation)

Let $k \ge 0$. A *k*-bisimulation between two pointed models (M, w_d) and (M', w'_d) , with M = (W, R, V) and M' = (W', R', V'), is a sequence of non-empty binary relations $Z_k \subseteq \cdots \subseteq Z_0 \subseteq W \times W'$ such that $(w_d, w'_d) \in Z_k$ and for all h < k:

• [atom] If $(w, w') \in Z_0$, then for all $p \in \mathcal{P}$, $w \in V(p)$ iff $w' \in V'(p)$.

- [forth_h] If $(w, w') \in Z_{h+1}$ and wR_iv , then there is $v' \in W'$ s.t. $w'R'_iv'$ and $(v, v') \in Z_h$.
- [back_h] If $(w, w') \in Z_{h+1}$ and $w'R'_iv'$, then there is $v \in W$ s.t. wR_iv and $(v, v') \in Z_h$.

We write $w \Leftrightarrow_k w'$ to denote that w and w' are k-bisimilar. We denote the k-bisimulation (equivalence) class of $w \in W$ as $[w]_k = \{v \in W \mid w \Leftrightarrow_k v\}$.

Proposition ([book/cup/Blackburn2001])

Two pointed models are k-bisimilar iff they they satisfy the same formulas of $\{\phi \in \mathcal{L} \mid md(\phi) \leq k\}$, i.e., all of formulas up to modal depth k.

Definition (Bisimulation Contraction)

The (bisimulation) contraction $\lfloor \mathcal{M} \rfloor$ of a pointed model \mathcal{M} is the quotient structure of \mathcal{M} with respect to the bisimulation relation \Leftrightarrow . Namely, $\lfloor \mathcal{M} \rfloor = ((W', R', V'), [w_d]_{\Leftrightarrow})$, where:

 $\blacksquare W' = \{ [w]_{\text{Left}} \mid w \in W \}$

$$\blacksquare R'_i = \{ ([w]_{\Leftrightarrow}, [v]_{\Leftrightarrow}) \mid wR_iv \}$$

• $V'(p) = \{ [w]_{\scriptscriptstyle{\mathfrak{s}}} \in W' \mid w \in V(p) \}$

Proposition ([book/cup/Blackburn2001])

Two pointed models are bisimilar iff they satisfy the same formulas of \mathcal{L} .

It is relatively straightforward to prove that:

- \blacksquare $\left\lfloor \mathcal{M} \right\rfloor$ is bisimilar to $\mathcal{M};$ and
- $\lfloor \mathcal{M} \rfloor$ is a minimal model bisimilar to \mathcal{M} .

Definition (Standard *k*-Contraction [journals/logcom/2023/BolanderL; conf/ijcai/Yu2013])

The standard k-(bisimulation) contraction $\lfloor \mathcal{M} \rfloor_k$ of a pointed model $\mathcal{M} = ((M, R, V), w_d)$ is the quotient structure of \mathcal{M} with respect to \Leftrightarrow_k . Namely, $\lfloor \mathcal{M} \rfloor_k = ((W', R', V'), [w_d]_k)$:

$$W' = \{ [w]_k \mid w \in W \}$$

•
$$R'_i = \{([w]_k, [v]_k) \mid wR_iv\}$$

•
$$V'(p) = \{ [w]_k \in W' \mid w \in V(p) \}$$

It is relatively straightforward to prove that $\lfloor \mathcal{M} \rfloor_k$ is k-bisimilar to \mathcal{M} .

However...

 $[\mathcal{M}]_k$ is **not** in general a minimal model k-bisimilar to \mathcal{M} , as we now show.

 \mathcal{M}' is a minimal model k-bisimilar to \mathcal{M} . But what does $|\mathcal{M}|_k$ look like?

 \mathcal{M}' is a minimal model k-bisimilar to \mathcal{M} . But what does $[\mathcal{M}]_k$ look like?

• Each world of \mathcal{M} can be identified by a specific formula of depth $\leq k$

 \mathcal{M}' is a minimal model k-bisimilar to \mathcal{M} . But what does $[\mathcal{M}]_k$ look like?

- Each world of \mathcal{M} can be identified by a specific formula of depth $\leq k$
- $w_i \neq w_j$ implies $[w_i]_k \neq [w_j]_k$

 \mathcal{M}' is a minimal model k-bisimilar to \mathcal{M} . But what does $[\mathcal{M}]_k$ look like?

- Each world of \mathcal{M} can be identified by a specific formula of depth $\leq k$
- $w_i \neq w_j$ implies $[w_i]_k \neq [w_j]_k$
- $\lfloor \mathcal{M} \rfloor_k$ is isomorphic to \mathcal{M}

ROOTED *K*-CONTRACTIONS

Let $k \ge 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with M = (W, R, V).

Definition (Depth and Bound)

- The depth d(w) of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The **bound** of a world w is b(w) = k d(w).

Figure: Depth (*d*) and bound (*b*) of worlds of model \mathcal{M} for k = 2.

Let $k \ge 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with M = (W, R, V).

Definition (Depth and Bound)

- The depth d(w) of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The **bound** of a world w is b(w) = k d(w).

Figure: Depth (*d*) and bound (*b*) of worlds of model \mathcal{M} for k = 2.

Let $k \ge 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with M = (W, R, V).

Definition (Depth and Bound)

- The depth d(w) of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The **bound** of a world w is b(w) = k d(w).

Figure: Depth (*d*) and bound (*b*) of worlds of model \mathcal{M} for k = 2.

Let $k \ge 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with M = (W, R, V).

Definition (Depth and Bound)

- The depth d(w) of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The **bound** of a world w is b(w) = k d(w).

Figure: Depth (*d*) and bound (*b*) of worlds of model \mathcal{M} for k = 2.

Redirecting Edges

Example

Figure: Two pointed models: \mathcal{N}_1 (left) and \mathcal{N}_2 (right).

- Let k = 2. We have the following:
 - $\bullet \ \mathcal{N}_1 \leftrightarrows_2 \mathcal{N}_2$
 - \blacksquare \mathcal{N}_1 is not a world-minimal model 2-bisimilar to \mathcal{N}_1
 - N₂ is world minimal, since any model 2-bisimilar to N₁ must have at least three worlds (one for each atomic proposition)

Redirecting Edges

Example

Figure: Two pointed models: \mathcal{N}_1 (left) and \mathcal{N}_2 (right).

 N_2 is obtained from N_1 by redirecting all incoming edges of w_3 to w_2 and deleting the worlds that are no longer reachable from the designated world.

Idea

a World w_2 can be considered as a **representative** of w_3 .

This is possible because the following two conditions hold:

- $w_2 \simeq_{b(w_3)} w_3$, namely $w_2 \simeq_0 w_3$
- $\bullet b(w_2) \geqslant b(w_3)$

Redirecting Edges

Example

Figure: Two pointed models: \mathcal{N}_1 (left) and \mathcal{N}_2 (right).

Lemma

Let $k \ge 0$, let (M, w_d) be a pointed model, with M = (W, R, V), and let $x \in W$ and $y \in W \setminus \{w_d\}$ be two distinct worlds such that:

• $b(x) \ge b(y) \ge 0$ and

• $x \Leftrightarrow_{b(y)} y$.

Let (M', w_d) be the pointed model obtained by deleting y from (M, w_d) and redirecting its incoming edges to x. Then, $(M, w_d) \Leftrightarrow_k (M', w_d)$.

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \ge b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore b(x) > b(y), we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds

$$W^{\max} = \{ x \in W \mid b(x) \ge 0 \text{ and } \neg \exists y \in W(y \succ x) \}$$

Let k = 1. We now calculate W^{max} :

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \ge b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore b(x) > b(y), we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds

$$W^{\max} = \{ x \in W \mid b(x) \ge 0 \text{ and } \neg \exists y \in W(y \succ x) \}$$

Let k = 1. We now calculate W^{max} :

•
$$w_d \in W^{\max}$$

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \ge b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore b(x) > b(y), we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds

 $W^{\max} = \{ x \in W \mid b(x) \ge 0 \text{ and } \neg \exists y \in W(y \succ x) \}$

Let k = 1. We now calculate W^{max} :

•
$$w_d \in W^{\max}$$

•
$$w_1, w_2 \notin W^{\max}$$
, since $w_d \succ w_1, w_2$

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \ge b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore b(x) > b(y), we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds

 $W^{\max} = \{ x \in W \mid b(x) \ge 0 \text{ and } \neg \exists y \in W(y \succ x) \}$

Let k = 1. We now calculate W^{max} :

•
$$w_d \in W^{\max}$$

•
$$w_1, w_2 \notin W^{\max}$$
, since $w_d \succ w_1, w_2$

• $w_3, w_4 \notin W^{\max}$, since $b(w_1), b(w_2) < 0$

Thus: $W^{\max} = \{w_d\}$.

Rooted *k*-Contractions

It is not hard to show that if $w, v \in W^{\max}$ and $w \cong_{b(w)} v$ then b(w) = b(v).

Definition (Representative Class)

The **representative class** of a world w is the class $[w]_{b(w)}$, which we denote with the compact notation [w].

Definition (Rooted *k*-**Contraction)**

Let $\mathcal{M} = ((W, R, V), w_d)$ and let $k \ge 0$. The **rooted** *k*-contraction of \mathcal{M} is the pointed model $\|\mathcal{M}\|_k = ((W', R', V'), [\![w_d]\!])$, where:

$$W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}$$

•
$$R'_i = \{(\llbracket x \rrbracket, \llbracket y \rrbracket) \mid x, y \in W^{\max}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}$$

• $V'(p) = \{ [x] \in W' \mid x \in V(p) \}$

Accessibility relations:

- We "redirect" xR_iz to $[x]R'_i[y]$
- If b(x) = 0, then [x] only needs to preserve 0-bisimilarity

11/18

The **rooted** *k*-contraction of \mathcal{M} is the pointed model $\|\mathcal{M}\|_k = ((W', R', V'), [[w_d]])$, where:

- $\bullet W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}$
- $R'_i = \{(\llbracket x \rrbracket, \llbracket y \rrbracket) \mid x, y \in W^{\max}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}$
- $V'(p) = \{ \llbracket x \rrbracket \in W' \mid x \in V(p) \}$

The **rooted** *k*-contraction of \mathcal{M} is the pointed model $\|\mathcal{M}\|_k = ((W', R', V'), [[w_d]])$, where:

$$W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}$$

•
$$R'_i = \{(\llbracket x \rrbracket, \llbracket y \rrbracket) \mid x, y \in W^{\max}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}$$

$$V'(p) = \{ [\![x]\!] \in W' \mid x \in V(p) \}$$

The **rooted** *k*-contraction of \mathcal{M} is the pointed model $\|\mathcal{M}\|_k = ((W', R', V'), [[w_d]])$, where:

 $\bullet W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}$

•
$$R'_i = \{(\bar{[x]}, [[y]]) \mid x, y \in W^{\max}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}$$

• $V'(p) = \{ [x] \in W' \mid x \in V(p) \}$

The **rooted** *k*-contraction of \mathcal{M} is the pointed model $\|\mathcal{M}\|_k = ((W', R', V'), [[w_d]])$, where:

$$W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}$$

•
$$R'_i = \{(\llbracket x \rrbracket, \llbracket y \rrbracket) \mid x, y \in W^{\max}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}$$

$$V'(p) = \{ [x] \in W' \mid x \in V(p) \}$$

The **rooted** *k*-contraction of \mathcal{M} is the pointed model $\|\mathcal{M}\|_k = ((W', R', V'), [[w_d]])$, where:

$$W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}$$

•
$$R'_i = \{(\bar{\llbracket}x\bar{\rrbracket}, \llbracket y \rrbracket) \mid x, y \in W^{\max}, \exists z(xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}$$

$$V'(p) = \{ [x] \in W' \mid x \in V(p) \}$$

Theorem

Let \mathcal{M} be a pointed model and let $k \ge 0$. Then, $\mathcal{M} \simeq_k \|\mathcal{M}\|_k$.

Proof idea.

We show that Z_k, \ldots, Z_0 is a k-bisimulation between \mathcal{M} and $\|\mathcal{M}\|_k$, where for all $0 \leq h \leq k$:

 $Z_h = \{(x, \llbracket x' \rrbracket) \mid x' \in W^{\max}, x' \Leftrightarrow_h x \text{ and } b(x) \ge h\}.$

Theorem (World Minimality)

Given a pointed model \mathcal{M} and $k \ge 0$, $\|\mathcal{M}\|_k$ is a world-minimal model k-bisimilar to \mathcal{M} .

Proof sketch.

Let $\llbracket x \rrbracket \neq \llbracket y \rrbracket$ be two worlds of $\llbracket \mathcal{M} \rrbracket_k$ such that $b(\llbracket x \rrbracket) = b(\llbracket y \rrbracket) = h$:

- We show that $[x] \neq_h [y]$
- We then can prove that each set W_h of worlds of $\|\mathcal{M}\|_k$ having bound h is minimal
- If all such sets W_h are minimal, then $\|\mathcal{M}\|_k$ is world minimal

MINIMAL K-CONTRACTIONS

We Still Don't Have Edge Minimality

Example

Figure: Pointed models \mathcal{M} (left) and $\|\mathcal{M}\|_3$ (right).

Let k = 3. We have $W^{\max} = W$ and $b(w_3) = 1$:

- From $w_3 R w_1$ and $w_3 R w_2$ we have $\llbracket w_3 \rrbracket R' \llbracket w_1 \rrbracket$ and $\llbracket w_3 \rrbracket R' \llbracket w_2 \rrbracket$
- Since $b(w_3) = 1$ and thus $\llbracket w_3 \rrbracket$ only needs to preserve 1-bisimilarity to w_3
 - ightarrow Including only one of those edges in R' is sufficient to guarantee 3-bisimilarity to ${\mathcal M}$

Definition

Let < be a total order on W and let $0 \le h \le k$. The least *h*-representative of $w \in W$ is the world $\min_h(w) = \min_{\le k \in W} |v \Leftrightarrow_h w|$.

Definition (Rooted *k*-**Contractions)**

Let $\mathcal{M} = ((W, R, V), w_d)$, let $k \ge 0$ and let < be a total order on W. The **rooted** *k*-contraction of \mathcal{M} wrt. < is the pointed model $\|\mathcal{M}\|_k^< = ((W', R', V'), [\![w_d]\!])$, where:

$$W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \};$$

•
$$R'_i = \{(\llbracket x \rrbracket, \llbracket \min_{b(x)-1}(y) \rrbracket) \mid x \in W^{\max}, xR_iy \text{ and } b(x) > 0\};$$

•
$$V'(p) = \{ \llbracket x \rrbracket \mid x \in W^{\max} \text{ and } x \in V(p) \}.$$

Theorem (Correctness and Minimality)

For any \mathcal{M} and $k \ge 0$, $\|\mathcal{M}\|_k^<$ is a minimal pointed model k-bisimilar to \mathcal{M} .

EXPONENTIAL SUCCINCTNESS

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

Let k = 3. We build \mathcal{M}_k as follows:

$\varepsilon:p_0$

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

Let k = 3. We build \mathcal{M}_k as follows:

In $[\mathcal{M}]_k$, we have $x \neq y$ implies $[x]_k \neq [y]_k$. Thus $|W| = 2^{k+1}$

There exist models \mathcal{M}_k , $k \ge 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

Let k = 3. We build \mathcal{M}_k as follows:

17/18

CONCLUSIONS

Rooted *k*-contractions improve standard *k*-contractions:

- Provide minimal models
- Can be exponentially more succinct

Current and future works:

- **Canonical** *k*-contractions: provide a unique minimal *k*-contracted model
- Multi-pointed models
- Apply rooted k-contractions to epistemic planning
- Connection with knowledge/modal structures (by R. Fagin, J. Halpern and M. Vardi)

THANK YOU

Questions?