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Example (Standard k-Contractions are Not Minimal)

M =M=@——e ro——eo M/ :@
WP Wg_1:p  wiip wo:p w/:p

Figure: Chain model M and standard k-contraction (left) and minimal k-contraction (right).

In this presentation:
m We give an improved definition: rooted k-contractions
m We prove correctness and minimality

m We show an exponential succinctness result
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Pointed Models

Let P be a countable set of atomic propositions and J a finite set of modality indices.

Definition (Language £ of Multi-Modal Logic)

e:i=pl=@|eAoe|0@, (where p € P and i € J)

Definition (Pointed Model)

A pointed model is a pair (M, wy), where wy is the designated world and M = (W, R, V):
m W # @ is a finite set of (possible) worlds
B R:J — 2WXW assigns to each i € J an accessibility relation R;
m V:P —2W s a valuation function assigning to each atom a set of worlds
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Bounded Bisimulation

Definition (Bounded Bisimulation)

Let k > 0. A k-bisimulation between two pointed models (M, wy) and (M’, w}), with
M= (W,R,V)and M' = (W', R, V'), is a sequence of non-empty binary relations
Z C--- C Zy C W x W' such that (wy, wj) € Zx and for all h < k:

m [atom] If (w, w’) € Zg, then for all p € P, w € V(p) iff w’ € V/(p).
m [forthy] If (w, w’) € Zy11 and wR;v, then there is v/ € W' s.t. w'R/v’ and (v, v') € Z,.
m [backy] If (w, w’) € Zp11 and w/R/v’, then there is v € W s.t. wR;v and (v, v’) € Z,.

We write w <, w' to denote that w and w’ are k-bisimilar. We denote the k-bisimulation
(equivalence) class of w € W as [w]y ={v e W | w e v}

Proposition ([book/cup/Blackburn2001])

Two pointed models are k-bisimilar iff they they satisfy the same formulas of
{p € L | md(d) < k}, i.e., all of formulas up to modal depth k.
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.
Bisimulation Contractions

Definition (Bisimulation Contraction)
The (bisimulation) contraction |[M]| of a pointed model M is the quotient structure of M
with respect to the bisimulation relation £. Namely, |[ M| = (W', R’, V'), [w4l<), where:

m W ={lwle |we W}

m R/ ={([wle, [v]e) | wRiv}

m V'(p) ={lwle e W |we V(p)}

Proposition ([book/cup/Blackburn2001])

Two pointed models are bisimilar iff they satisfy the same formulas of .

It is relatively straightforward to prove that:
m |[M] is bisimilar to M; and
m | M] is a minimal model bisimilar to M.
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e
Standard k-Contractions

Definition (Standard k-Contraction [journals/logcom/2023/BolanderL;

conf/ijcai/Yu2013])

The standard k-(bisimulation) contraction |[M]|, of a pointed model M = ((M, R, V), wy)
is the quotient structure of M with respect to <. Namely, |[M], = (W', R’, V'), [wqlk):

m W ={wl|we W}
m R/ ={([wlk, [vlk) | wR;v}
m V/(p)={wlk e W' |we V(p)}

It is relatively straightforward to prove that [ M|, is k-bisimilar to M.

|M], is not in general a minimal model k-bisimilar to M, as we now show.
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Example (Chain Model)

M=@—r0 Q> @ M/ =

M’ is a minimal model k-bisimilar to M. But what does ||, look like?

7/18



S

Example (Chain Model)

M=@—— e re——— @ M =
Wk:p Wk—1:p wi:p wo:p W,ip
Okp ool oOL oL

M’ is a minimal model k-bisimilar to M. But what does ||, look like?
m Each world of M can be identified by a specific formula of depth < k
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Example (Chain Model)

M=@— @ r——— @ M =
Wi :p Wk_1:p wy:p wo:p wi:p

wile # [wkale # [wale  # [wolk
M’ is a minimal model k-bisimilar to M. But what does | M|, look like?

m Each world of M can be identified by a specific formula of depth < k

m w; # w; implies [w;]x # [wjlk
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S

Example (Chain Model)

M, =M=@— >0 re—————>0 M =
Wi :p Wk_1:p wy:p wo:p wi:p
wile:p wealeep Twalkep (wolk:p

M’ is a minimal model k-bisimilar to M. But what does ||, look like?
m Each world of M can be identified by a specific formula of depth < k
m w; # w; implies [wilx # [w;lk
m | M], is isomorphic to M
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ROOTED K-CONTRACTIONS




Bound of a World

Let kK > 0 and let M = (M, wy) be a pointed model, with M = (W R, V).

Definition (Depth and Bound)

m The depth d(w) of a world w is the length of the shortest path from wy to w (oo if no
such path exists).

m The bound of a world w is b(w) = k — d[w).

d |b(k=2)
0 2
1 1
2 0

Figure: Depth (d) and bound (b) of worlds of model M for k = 2.
8/18



Bound of a World

Let kK > 0 and let M = (M, wy) be a pointed model, with M = (W R, V).

Definition (Depth and Bound)

m The de

pth d(w) of a world w is the length of the shortest path from wy to w (oo if no

such path exists).
m The bound of a world w is b(w) = k — d[w).

d |b(k=2) S
— ..__w/ ™. Minimal 2-contraction
0 2 ‘® ¢ "
1 1
5 0 @@ T

Figure: Depth (d) and bound (b) of worlds of model M for k = 2.
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Redirecting Edges

Example
wWy:p wy:p

wi:q
wo:ir wi:q wo:r

w3.r @—@ W4p

Figure: Two pointed models: N; (left) and N, (right).

Let k = 2. We have the following:
mNp 2N
m N7 is not a world-minimal model 2-bisimilar to N

m N, is world minimal, since any model 2-bisimilar to N7 must have at least three worlds
(one for each atomic proposition)
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Redirecting Edges
Example
wi:q Q .—’Q

wa:r wi:q wo:r
w3.r @—>@ Wiip
Figure: Two pointed models: N; (left) and N, (right).

N> is obtained from N7 by redirecting all incoming edges of ws to w, and deleting the worlds
that are no longer reachable from the designated world.

@ World ws can be considered as a representative of ws.

This is possible because the following two conditions hold:
B Wy €p(y,) W3, Namely wo £ ws

m b(wz) > b(ws) 9/18



Redirecting Edges
Example
/@QZP wy:p
wi:q I Q Q

walr wi:q wo:r
W3if @—»@ Wi4:p
Figure: Two pointed models: N; (left) and N, (right).

Let k > 0, let (M, wy) be a pointed model, with M = (W, R, V), and let x € W and
y € W\ {wy} be two distinct worlds such that:

m b(x) > b(y) >0 and
D¢ t‘)b(y) y.
Let (M’, wy) be the pointed model obtained by deleting y from (M, wy) and redirecting its
incoming edges to x. Then, (M, wy) <=, (M’ wy).
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Maximal Representatives

Definition (Representatives)

Let x, y be two worlds with non-negative bound.

m We say that x represents y, denoted by x ~ y, iff b(x) > b(y) and x 24, y
m If furthermore b(x) > b(y), we say that x strictly represents y, denoted by x - y

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds
WM ={x e W | b(x) >0and =dy € W(y = x)}
Let Kk =1. We now calculate W™*;
wg:p
wip @ w2:p

w3iq ® wiiq 10/18
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Maximal Representatives

Definition (Representatives)

Let x, y be two worlds with non-negative bound.
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m If furthermore b(x) > b(y), we say that x strictly represents y, denoted by x - y

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds
WM ={x e W | b(x) >0and =dy € W(y = x)}

Let k = 1. We now calculate W™

max
wy:p mw, e W
mowy, wo &€ WM, since wy = wy, wa

nre e m w3, wy & W™ since b(wy), b(ws) < 0
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Rooted k-Contractions

It is not hard to show that if w,v € W™ and w <, v then b(w) = b(v).

Definition (Representative Class)

The representative class of a world w is the class [w](,), which we denote with the
compact notation [w].

Definition (Rooted k-Contraction)

Let M = ((W, R, V), wy) and let kK > 0. The rooted k-contraction of M is the pointed
model [|[M]||, = (W', R’, V'), [wa]), where:

m W ={[x] | x € Wm}
m R/ ={([x], [yD | x,y € W™, 3z(xR;z and y <}()_1 z) and b(x) > 0}
m V'(p)={[x] e W |x € V(p)}

Accessibility relations:
m We “redirect” xR;z to [x]R/[y]
m If b(x) =0, then [x] only needs to preserve O-bisimilarity 11/18



The rooted k-contraction of M is the pointed model |[M]|, = (W', R’, V'), [wq]), where:
m W ={[x] | x e Wma}
m R ={([x]. [y]) | x,y € W™, 3z(xR;z and y ()1 z) and b(x) > 0}
a Vi(p)={x] € W xe V(p)}

Wq:ip

wip wo:p

w3:q '/o wa:q
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Let kK = 1:
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The rooted k-contraction of M is the pointed model |[M]|, = (W', R’, V'), [wq]), where:
m W ={[x] | x e Wma}
m R ={([x]. [y]) | x,y € W™, 3z(xR;z and y ()1 z) and b(x) > 0}
a Vi(p)={x] € W xe V(p)}

wWy:p [wglo:p Q[Wdh:P

w1:pI wa:p [wili:p /)[thip
w3:q '/. wy:q | [Wﬂo:q

Let k = 1:
WM ={wy}
m [wy]R'[wy] since wyRw,

and wy 29 wy
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Correctness

Let M be a pointed model and let k > 0. Then, M <, || M],.

We show that 7, ..., Zy is a k-bisimulation between M and [[M]|,, where for all 0 < h < k:

Zn ={(x, [x']) | x’ € W™, x" 2, x and b(x) > h}.

13/18



S
World Minimality

Theorem (World Minimality)

Given a pointed model M and k > 0, || M|, is a world-minimal model k-bisimilar to M.

Proof sketch.

Let [x] # [y] be two worlds of ||M]|, such that b([x]) = b([y]) = h:
m We show that [x] #, [v]

m We then can prove that each set W/}, of worlds of || M|, having bound h is minimal
m If all such sets W}, are minimal, then || M|, is world minimal
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MINIMAL K-CONTRACTIONS




We Still Don’t Have Edge Minimality

Example

Wq:p [wglz:p

wi:p f/a\fwzzp [wilo:p 3 (wala:p
w3:iq /o waiq [wsli:g ® [wili:q
Figure: Pointed models M (left) and || M]|; (right).

Let k = 3. We have W™ = W and b(ws) = 1:
m From wsRw; and wsRw; we have [ws]R'[wi] and [ws]R'[ws]
m Since b(wz) =1 and thus [ws] only needs to preserve 1-bisimilarity to ws
— Including only one of those edges in R’ is sufficient to guarantee 3-bisimilarity to M
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Minimal k-Contractions

Definition

Let < be a total order on W and let 0 < h < k. The least h-representative of w € W is the
world min,(w) = min_{v € W™ | v &, w}.

Definition (Rooted k-Contractions)

Let M = (W, R, V), wy), let k>0 and let < be a total order on W. The rooted
k-contraction of M wrt. < is the pointed model [ M| = (W', R’, V'), [wa]), where:
B W ={[x] | x € Wma},
m R/ ={([x], [minpy—1(¥)]) | x € W™ xRy and b(x) > 0};
m V/(p) ={[x] | x € W™ and x € V(p)}.

Theorem (Correctness and Minimality)

For any M and k > 0, [LMJJ: is a minimal pointed model k-bisimilar to M.
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EXPONENTIAL SUCCINCTNESS




Exponential Succinctness

Theorem (Exponential succinctness)

There exist models My, k > 0, for which the rooted k-contraction has @ (k) worlds whereas
the standard k-contraction has ©(2%) worlds.

Let kK = 3. We build M as follows:
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Exponential Succinctness
Theorem (Exponential succinctness)
There exist models My, k > 0, for which the rooted k-contraction has @ (k) worlds whereas

the standard k-contraction has ©(2%) worlds.

Let K = 3. We build My as follows:
e

//// !
e /7//‘p2‘ II J/ '
Ny, 1 1
Y | / \ I
~ \ 1
rl:ps  rlr:ps  rrl:ps rrrips
17/18
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CONCLUSIONS



.
Conclusions and Future Works

Rooted k-contractions improve standard k-contractions:
m Provide minimal models

m Can be exponentially more succinct

Current and future works:
m Canonical k-contractions: provide a unique minimal k-contracted model
m Multi-pointed models
m Apply rooted k-contractions to epistemic planning
m Connection with knowledge/modal structures (by R. Fagin, J. Halpern and M. Vardi)
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THANK YOU

Questions?
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