BETTER BOUNDED BISIMULATION CONTRACTIONS

Thomas Bolander Technical University of Denmark, Denmark

Alessandro Burigana Free University of Bozen-Bolzano, Italy

AiML 2024 August 23rd Prague, Czech Republic

Example (Standard k-Contractions are Not Minimal)

$$
\lfloor \mathcal{M} \rfloor_k \cong \mathcal{M} = \underset{W_k: p}{\bigcirc} \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet \qquad \bullet \qquad \qquad \mathcal{M}' = \underset{W'_k: p}{\bigcirc}
$$

Figure: Chain model M and standard k -contraction (left) and minimal k -contraction (right).

In this presentation:

- \blacksquare We give an improved definition: **rooted** *k*-contractions
- \blacksquare We prove correctness and minimality
- We show an exponential succinctness result

Let $\mathcal P$ be a countable set of atomic propositions and $\mathcal I$ a finite set of modality indices.

Definition (Language $\mathcal L$ of Multi-Modal Logic)

 $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box_i \varphi$, (where $p \in \mathcal{P}$ and $i \in \mathcal{I}$)

Definition (Pointed Model)

A pointed model is a pair (M, w_d) , where w_d is the designated world and $M = (W, R, V)$:

- \blacksquare $W \neq \emptyset$ is a finite set of (possible) worlds
- $R:\mathcal{I}\rightarrow 2^{W\times W}$ assigns to each $i\in \mathcal{I}$ an accessibility relation R_i
- $V: \mathcal{P} \rightarrow 2^W$ is a **valuation function** assigning to each atom a set of worlds

Definition (Bounded Bisimulation)

Let $k \geqslant 0$. A k-bisimulation between two pointed models (M, w_d) and (M', w'_d) , with $M = (W, R, V)$ and $M' = (W', R', V')$, is a sequence of non-empty binary relations $Z_k \subseteq \cdots \subseteq Z_0 \subseteq W \times W'$ such that $(w_d, w'_d) \in Z_k$ and for all $h < k$:

[atom] If $(w, w') \in Z_0$, then for all $p \in \mathcal{P}$, $w \in V(p)$ iff $w' \in V'(p)$.

- [forth_h] If $(w, w') \in Z_{h+1}$ and $wR_i v$, then there is $v' \in W'$ s.t. $w'R'_i v'$ and $(v, v') \in Z_h$.
- [back_h] If $(w, w') \in Z_{h+1}$ and $w'R'_i v'$, then there is $v \in W$ s.t. $wR_i v$ and $(v, v') \in Z_h$.

We write $w \Leftrightarrow_k w'$ to denote that w and w' are k-bisimilar. We denote the k-bisimulation
Convivalence) class of $w \in M$ as $[w]_x = [w \in M]_x$ (equivalence) class of $w \in W$ as $[w]_k = \{v \in W \mid w \Leftrightarrow_k v\}.$

Proposition ([book/cup/Blackburn2001])

Two pointed models are k-bisimilar iff they they satisfy the same formulas of $\{\phi \in \mathcal{L} \mid md(\phi) \leq k\}$, i.e., all of formulas up to modal depth k.

Definition (Bisimulation Contraction)

The (bisimulation) contraction $|\mathcal{M}|$ of a pointed model M is the quotient structure of M with respect to the bisimulation relation \cong . Namely, $\lfloor \mathcal{M} \rfloor = ((W', R', V'), [w_d]_{\cong})$, where:

 $W' = \{ [w]_{\leftrightarrow} | w \in W \}$

$$
\blacksquare \ \ R'_i = \{ ([w]_{\Leftrightarrow}, [v]_{\Leftrightarrow}) \mid wR_iv \}
$$

 $V'(p) = \{ [w]_{\rightrightarrows} \in W' \mid w \in V(p) \}$

Proposition ([book/cup/Blackburn2001])

Two pointed models are bisimilar iff they satisfy the same formulas of \mathcal{L} .

It is relatively straightforward to prove that:

- \blacksquare | M | is bisimilar to M; and
- \blacksquare | M | is a minimal model bisimilar to M.

Definition (Standard k-Contraction [journals/logcom/2023/BolanderL; conf/ijcai/Yu2013])

The standard k-(bisimulation) contraction ${[\mathcal{M}]}_k$ of a pointed model $\mathcal{M} = ((M, R, V), w_d)$ is the quotient structure of M with respect to ω_k . Namely, $\left[\mathcal{M}\right]_k = ((W', R', V'), [w_d]_k)$:

$$
\blacksquare \ W' = \{ [w]_k \mid w \in W \}
$$

- $R'_{i} = \{([w]_{k}, [v]_{k}) | wR_{i}v\}$
- $V'(p) = \{ [w]_k \in W' \mid w \in V(p) \}$

It is relatively straightforward to prove that $\left[\mathcal{M}\right]_k$ is k -bisimilar to $\mathcal{M}.$

However. . .

 $\left[\mathcal{M}\right]_k$ is not in general a minimal model *k*-bisimilar to \mathcal{M} , as we now show.

 ${\mathcal M}'$ is a minimal model *k*-bisimilar to ${\mathcal M}$. But what does $\lfloor {\mathcal M} \rfloor_k$ look like?

 ${\mathcal M}'$ is a minimal model *k*-bisimilar to ${\mathcal M}$. But what does $\lfloor {\mathcal M} \rfloor_k$ look like?

Each world of M can be identified by a specific formula of depth $\leq k$

 ${\mathcal M}'$ is a minimal model *k*-bisimilar to ${\mathcal M}$. But what does $\lfloor {\mathcal M} \rfloor_k$ look like?

- **Each world of M can be identified by a specific formula of depth** $\leq k$
- $w_i \neq w_j$ implies $[w_i]_k \neq [w_j]_k$

 ${\mathcal M}'$ is a minimal model *k*-bisimilar to ${\mathcal M}$. But what does $\lfloor {\mathcal M} \rfloor_k$ look like?

- **Each world of M can be identified by a specific formula of depth** $\leq k$
- $w_i \neq w_j$ implies $[w_i]_k \neq [w_j]_k$
- $\left[\mathbb{M}\right]_{k}$ is isomorphic to $\mathbb{M}% _{k}$

ROOTED K[-CONTRACTIONS](#page-0-0)

Let $k \geq 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with $M = (W, R, V)$.

Definition (Depth and Bound)

- The depth $d(w)$ of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The bound of a world w is $b(w) = k d(w)$.

Figure: Depth (d) and bound (b) of worlds of model M for $k = 2$.

Let $k \geq 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with $M = (W, R, V)$.

Definition (Depth and Bound)

- The depth $d(w)$ of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The bound of a world w is $b(w) = k d(w)$.

Figure: Depth (d) and bound (b) of worlds of model M for $k = 2$.

Let $k \geq 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with $M = (W, R, V)$.

Definition (Depth and Bound)

- The depth $d(w)$ of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The bound of a world w is $b(w) = k d(w)$.

Figure: Depth (d) and bound (b) of worlds of model M for $k = 2$.

Let $k \geq 0$ and let $\mathcal{M} = (M, w_d)$ be a pointed model, with $M = (W, R, V)$.

Definition (Depth and Bound)

- The depth $d(w)$ of a world w is the length of the shortest path from w_d to w (∞ if no such path exists).
- The bound of a world w is $b(w) = k d(w)$.

Figure: Depth (d) and bound (b) of worlds of model M for $k = 2$.

Redirecting Edges

Example

Figure: Two pointed models: N_1 (left) and N_2 (right).

- Let $k = 2$. We have the following:
	- $\mathbb{N}_1 \Leftrightarrow \mathbb{N}_2$
	- \blacksquare N₁ is not a world-minimal model 2-bisimilar to N₁
	- \Box N₂ is world minimal, since any model 2-bisimilar to N₁ must have at least three worlds (one for each atomic proposition)

Redirecting Edges

Example

Figure: Two pointed models: N_1 (left) and N_2 (right).

 \mathcal{N}_2 is obtained from \mathcal{N}_1 by redirecting all incoming edges of w_3 to w_2 and deleting the worlds that are no longer reachable from the designated world.

Idea

 $\sqrt{2}$ World w_2 can be considered as a representative of w_3 .

This is possible because the following two conditions hold:

$$
\blacksquare \ W_2 \stackrel{\leftrightarrow}{\rightarrow}_{b(w_3)} w_3, \ \text{namely} \ w_2 \stackrel{\leftrightarrow}{\rightarrow}_0 w_3
$$

 $b(w_2) \geq b(w_3)$

Redirecting Edges

Example

Figure: Two pointed models: N_1 (left) and N_2 (right).

Lemma

Let $k \geq 0$, let (M, w_d) be a pointed model, with $M = (W, R, V)$, and let $x \in W$ and $y \in W \setminus \{w_d\}$ be two distinct worlds such that:

b $|x| \ge b(y) \ge 0$ and

 \blacksquare $X \triangleq_{b(v)} y$.

Let (M', w_d) be the pointed model obtained by deleting y from (M, w_d) and redirecting its incoming edges to x. Then, $(M, w_d) \Leftrightarrow_k (M', w_d)$.

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \geq b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore $b(x) > b(y)$, we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of **maximal representatives** of W is the set of worlds

$$
W^{\text{max}} = \{x \in W \mid b(x) \geq 0 \text{ and } \neg \exists y \in W(y \succ x)\}
$$

Let $k = 1$. We now calculate W^{max} .

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \geq b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore $b(x) > b(y)$, we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of **maximal representatives** of W is the set of worlds

$$
W^{\text{max}} = \{x \in W \mid b(x) \geq 0 \text{ and } \neg \exists y \in W(y \succ x)\}
$$

Let $k = 1$. We now calculate W^{max} .

$$
\blacksquare \ \ w_d \in W^{\max}
$$

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \geq b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore $b(x) > b(y)$, we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of **maximal representatives** of W is the set of worlds

$$
W^{\text{max}} = \{x \in W \mid b(x) \geq 0 \text{ and } \neg \exists y \in W(y \succ x)\}
$$

Let $k = 1$. We now calculate W^{max} .

$$
\blacksquare \ \ w_d \in W^{\max}
$$

$$
\blacksquare \ w_1, w_2 \notin W^{\max}, \text{ since } w_d \succ w_1, w_2
$$

Let x, y be two worlds with non-negative bound.

- We say that x represents y, denoted by $x \succeq y$, iff $b(x) \geq b(y)$ and $x \Leftrightarrow_{b(y)} y$
- If furthermore $b(x) > b(y)$, we say that x strictly represents y, denoted by $x \succ y$

Definition (Maximal Representatives)

The set of **maximal representatives** of W is the set of worlds

 $W^{max} = \{x \in W \mid b(x) \geq 0 \text{ and } \neg \exists y \in W(y \succ x)\}\$

Let $k = 1$. We now calculate W^{max} .

$$
\blacksquare \ \ w_d \in W^{\max}
$$

$$
\blacksquare \ w_1, w_2 \notin W^{\max}, \text{ since } w_d \succ w_1, w_2
$$

■ $w_3, w_4 \notin W^{\text{max}}$, since $b(w_1), b(w_2) < 0$

Thus: $W^{max} = \{w_d\}.$

Rooted k-Contractions

It is not hard to show that if w, $v \in W^{max}$ and $w \leftrightarrow_{b(w)} v$ then $b(w) = b(v)$.

Definition (Representative Class)

The representative class of a world w is the class $[w]_{b(w)}$, which we denote with the compact notation $\llbracket w \rrbracket$.

Definition (Rooted k-Contraction)

Let $\mathcal{M} = ((W, R, V), w_d)$ and let $k \ge 0$. The **rooted** k-contraction of M is the pointed model $\llbracket \mathcal{M} \rrbracket_k = ((W', R', V'), \llbracket w_d \rrbracket)$, where:

$$
W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}
$$

$$
\blacksquare \ R'_i = \{([\![x]\!], [\![y]\!]) \mid x, y \in W^{\text{max}}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0 \}
$$

$$
\blacksquare \ V'(p) = \{ [\![x]\!] \in W' \mid x \in V(p) \}
$$

Accessibility relations:

- We "redirect" xR_iz to $\llbracket x \rrbracket R_i' \llbracket y \rrbracket$
- If $b(x) = 0$, then $||x||$ only needs to **preserve** 0-**bisimilarity**

11/18

The rooted k-contraction of M is the pointed model $\llbracket \mathcal{M} \rrbracket_k = ((W', R', V'), \llbracket w_d \rrbracket)$, where:
 \blacksquare $W' = \llbracket w'' \rrbracket + v \in M^{max}$

- $W' = \{ \|x\| \mid x \in W^{max} \}$
- $R'_i = \{([\![x]\!], [\![y]\!]) \mid x, y \in W^{max}, \exists z (xR_iz \text{ and } y \triangleq_{b(x)-1} z) \text{ and } b(x) > 0 \}$
 $V'(n) = \{\![x]\!], [\![y]\!], z \in V(n) \}$
- $V'(p) = \{ [\![x]\!] \in W' \mid x \in V(p) \}$

The rooted k-contraction of M is the pointed model $\llbracket \mathcal{M} \rrbracket_k = ((W', R', V'), \llbracket w_d \rrbracket)$, where:
 \blacksquare $W' = \llbracket w'' \rrbracket + v \in M^{max}$

$$
W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}
$$

$$
R' = \{ (\llbracket x \rrbracket \mid W \rrbracket) \mid x, y \in W^{\max} \}
$$

$$
R'_i = \{([\lfloor x \rfloor, [\lfloor y \rfloor] \rfloor \mid x, y \in W^{\max}, \exists z (xR_i z \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0\}
$$

= $V'(p) - \lfloor \lceil y \rceil \rfloor \in W' \mid x \in V(p) \}$

$$
V'(p) = \{ \llbracket x \rrbracket \in W' \mid x \in V(p) \}
$$

The rooted k-contraction of M is the pointed model $\llbracket \mathcal{M} \rrbracket_k = ((W', R', V'), \llbracket w_d \rrbracket)$, where:
 \blacksquare $W' = \llbracket w'' \rrbracket + v \in M^{max}$

$$
W' = \{ [x] \mid x \in W^{\max} \}
$$

= $R' - \{ ([x] \mid [y]) \mid x, y \in$

$$
R'_i = \{([\![x]\!],[\![y]\!]) \mid x, y \in W^{\text{max}}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0 \}
$$

= $V'(p) - \{\![x]\!]\in W' \mid x \in V(p)\}$

$$
V'(p) = \{ \llbracket x \rrbracket \in W' \mid x \in V(p) \}
$$

The rooted k-contraction of M is the pointed model $\llbracket \mathcal{M} \rrbracket_k = ((W', R', V'), \llbracket w_d \rrbracket)$, where:
 \blacksquare $W' = \llbracket w'' \rrbracket + v \in M^{max}$

$$
W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}
$$

= $R' - \{ (\llbracket x \rrbracket \parallel W \rrbracket) \mid x, y \in W \}$

$$
R'_i = \{([\![x]\!],[\![y]\!]) \mid x, y \in W^{\text{max}}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0 \}
$$

= $V'(p) - \{\![x]\!]\in W' \mid x \in V(p)\}$

 $R'_i = \{([\![x]\!], [\![y]\!]) \mid x, y \in W^{\text{max}},$
 $V'(p) = \{[\![x]\!]\in W' \mid x \in V(p)\}$

The rooted k-contraction of M is the pointed model $\llbracket \mathcal{M} \rrbracket_k = ((W', R', V'), \llbracket w_d \rrbracket)$, where:
 \blacksquare $W' = \llbracket w'' \rrbracket + v \in M^{max}$

$$
W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \}
$$

= $R' = \{ (\llbracket x \rrbracket \parallel W \rrbracket) \mid x, y \in$

$$
R'_i = \{([\![x]\!],[\![y]\!]) \mid x, y \in W^{\text{max}}, \exists z (xR_iz \text{ and } y \Leftrightarrow_{b(x)-1} z) \text{ and } b(x) > 0 \}
$$

= $V'(p) - \text{div } z W' \mid x \in V(p)$

 $R'_i = \{([\![x]\!], [\![y]\!]) \mid x, y \in W^{\text{max}},$
 $V'(p) = \{[\![x]\!]\in W' \mid x \in V(p)\}$

■
$$
[[w_d]]R'[[w_d]]
$$
 since $w_d R w_1$
and $w_d \Leftrightarrow_0 w_1$
 $12/1$

Theorem

Let $\mathcal M$ be a pointed model and let $k\geqslant 0$. Then, $\mathcal M \Leftrightarrow_k \llbracket \mathcal M \rrbracket_k$.

Proof idea.

We show that Z_k, \ldots, Z_0 is a *k*-bisimulation between $\mathcal M$ and $\|\mathcal M\|_k$, where for all $0 \leqslant h \leqslant k$:

$$
Z_h = \{ (x, \llbracket x' \rrbracket) \mid x' \in W^{\max}, x' \Leftrightarrow_h x \text{ and } b(x) \geq h \}.
$$

Theorem (World Minimality)

Given a pointed model M and $k \geqslant 0$, $\|\mathcal{M}\|_k$ is a world-minimal model k-bisimilar to M.

Proof sketch.

Let $\llbracket x \rrbracket \neq \llbracket y \rrbracket$ be two worlds of $\llbracket \mathcal{M} \rrbracket_k$ such that $b(\llbracket x \rrbracket) = b(\llbracket y \rrbracket) = h$:

- We show that $\llbracket x \rrbracket \not\cong_h \llbracket y \rrbracket$
- We then can prove that each set W_h of worlds of $\llbracket \mathcal{M} \rrbracket_k$ having bound h is minimal
- If all such sets W_h are minimal, then $\left\| \mathcal{M} \right\|_k$ is world minimal

MINIMAL K[-CONTRACTIONS](#page-0-0)

We Still Don't Have Edge Minimality

Example

Figure: Pointed models \mathcal{M} (left) and $\left[\mathcal{M}\right]_3$ (right).

Let $k = 3$. We have $W^{max} = W$ and $b(w_3) = 1$:

- From w_3Rw_1 and w_3Rw_2 we have $[[w_3]]R'[[w_1]]$ and $[[w_3]]R'[[w_2]]$
- Since $b(w_3) = 1$ and thus $||w_3||$ only needs to preserve 1-bisimilarity to w_3
	- \rightarrow Including only one of those edges in R' is sufficient to guarantee 3-bisimilarity to M

Definition

Let \lt be a total order on W and let $0 \le h \le k$. The least h-representative of $w \in W$ is the world $\min_h(w) = \min_{\leq} \{v \in W^{\max} \mid v \leq_h w\}.$

Definition (Rooted k-Contractions)

Let $\mathcal{M} = ((W, R, V), w_d)$, let $k \geq 0$ and let \lt be a total order on W. The **rooted** *k*-contraction of M wrt. \lt is the pointed model $\llbracket \mathcal{M} \rrbracket_k^{\lt} = ((W', R', V'), \llbracket w_d \rrbracket)$, where:

$$
W' = \{ \llbracket x \rrbracket \mid x \in W^{\max} \};
$$

$$
\blacksquare R_i' = \{([\![x]\!], [\![\min_{b(x)-1}(y)]\!]) \mid x \in W^{\max}, xR_iy \text{ and } b(x) > 0\};
$$

$$
V'(p) = \{\llbracket x \rrbracket \mid x \in W^{\max} \text{ and } x \in V(p)\}.
$$

Theorem (Correctness and Minimality)

For any M and $k \geq 0$, $\lfloor M \rfloor \rfloor_k^{\lt}$ is a minimal pointed model k-bisimilar to M .

[EXPONENTIAL SUCCINCTNESS](#page-0-0)

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

Let $k = 3$. We build \mathcal{M}_k as follows:

ε:p⁰

There exist models \mathcal{M}_k , $k \geqslant 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geqslant 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

Let $k = 3$. We build \mathcal{M}_k as follows:

In $\lfloor \mathcal{M} \rfloor_k$, we have $x \neq y$ implies $[x]_k \neq [y]_k$. Thus $|W| = 2^{k+1}$

There exist models \mathcal{M}_k , $k \geq 0$, for which the rooted k-contraction has $\Theta(k)$ worlds whereas the standard k-contraction has $\Theta(2^k)$ worlds.

Let $k = 3$. We build \mathcal{M}_k as follows:

17/18

[CONCLUSIONS](#page-0-0)

Rooted *k*-contractions improve standard *k*-contractions:

- **Provide minimal models**
- Can be exponentially more succinct

Current and future works:

- **Canonical k-contractions:** provide a *unique* minimal k-contracted model
- **Multi-pointed models**
- \blacksquare Apply rooted *k*-contractions to **epistemic planning**
- Connection with **knowledge/modal structures** (by R. Fagin, J. Halpern and M. Vardi)

THANK YOU

Questions?