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Motivation

Example (Standard k-Contractions are Not Minimal)

wk :p
bMck ∼= M =

wk−1:p w1:p w0:p w ′k :p
M ′ =

Figure: Chain model M and standard k-contraction (left) and minimal k-contraction (right).

In this presentation:

We give an improved definition: rooted k-contractions

We prove correctness and minimality

We show an exponential succinctness result
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Pointed Models

Let P be a countable set of atomic propositions and I a finite set of modality indices.

Definition (Language L of Multi-Modal Logic)

ϕ ::= p | ¬ϕ | ϕ∧ϕ | �iϕ, (where p ∈ P and i ∈ I)

Definition (Pointed Model)

A pointed model is a pair (M,wd), where wd is the designated world and M = (W ,R,V ):

W 6= ∅ is a finite set of (possible) worlds

R : I→ 2W×W assigns to each i ∈ I an accessibility relation Ri

V : P→ 2W is a valuation function assigning to each atom a set of worlds
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Bounded Bisimulation

Definition (Bounded Bisimulation)

Let k > 0. A k-bisimulation between two pointed models (M,wd) and (M ′,w ′d), with
M = (W ,R,V ) and M ′ = (W ′,R ′,V ′), is a sequence of non-empty binary relations
Zk ⊆ · · · ⊆ Z0 ⊆W ×W ′ such that (wd ,w ′d) ∈ Zk and for all h < k:

[atom] If (w ,w ′) ∈ Z0, then for all p ∈ P, w ∈ V (p) iff w ′ ∈ V ′(p).

[forthh] If (w ,w ′) ∈ Zh+1 and wRiv , then there is v ′ ∈W ′ s.t. w ′R ′i v
′ and (v , v ′) ∈ Zh.

[backh] If (w ,w ′) ∈ Zh+1 and w ′R ′i v
′, then there is v ∈W s.t. wRiv and (v , v ′) ∈ Zh.

We write w -k w ′ to denote that w and w ′ are k-bisimilar. We denote the k-bisimulation
(equivalence) class of w ∈W as [w ]k = {v ∈W | w -k v }.

Proposition ([book/cup/Blackburn2001])

Two pointed models are k-bisimilar iff they they satisfy the same formulas of
{φ ∈ L | md(φ) 6 k}, i.e., all of formulas up to modal depth k.
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Example

Example (Chain Model)

wk :p
M =

wk−1:p w1:p w0:p w ′k :p
M ′ =

Z0

Z0

,Z1

Z0

,Z1 . . . ,Zk−1

Z0

,Z1 . . . ,Zk−1,Zk
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Bisimulation Contractions

Definition (Bisimulation Contraction)

The (bisimulation) contraction bMc of a pointed model M is the quotient structure of M
with respect to the bisimulation relation -. Namely, bMc = ((W ′,R ′,V ′), [wd ]-), where:

W ′ = {[w ]- | w ∈W }

R ′i = {([w ]-, [v ]-) | wRiv }

V ′(p) = {[w ]- ∈W ′ | w ∈ V (p)}

Proposition ([book/cup/Blackburn2001])

Two pointed models are bisimilar iff they satisfy the same formulas of L.

It is relatively straightforward to prove that:

bMc is bisimilar to M; and

bMc is a minimal model bisimilar to M.
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Standard k-Contractions

Definition (Standard k-Contraction [journals/logcom/2023/BolanderL;
conf/ijcai/Yu2013])

The standard k-(bisimulation) contraction bMck of a pointed model M = ((M,R,V ),wd)
is the quotient structure of M with respect to -k . Namely, bMck = ((W ′,R ′,V ′), [wd ]k):

W ′ = {[w ]k | w ∈W }

R ′i = {([w ]k , [v ]k) | wRiv }

V ′(p) = {[w ]k ∈W ′ | w ∈ V (p)}

It is relatively straightforward to prove that bMck is k-bisimilar to M.

However. . .

bMck is not in general a minimal model k-bisimilar to M, as we now show.
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Example

Example (Chain Model)

wk :p

bMck ∼=

M =
wk−1:p w1:p w0:p

[wk ]k

:p

[wk−1]k

:p

[w1]k

:p

[w0]k

:p

w ′k :p
M ′ =

M ′ is a minimal model k-bisimilar to M. But what does bMck look like?

Each world of M can be identified by a specific formula of depth 6 k

wi 6= wj implies [wi ]k 6= [wj ]k

bMck is isomorphic to M
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ROOTED K -CONTRACTIONS
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Bound of a World

Let k > 0 and let M = (M,wd) be a pointed model, with M = (W ,R,V ).

Definition (Depth and Bound)

The depth d(w) of a world w is the length of the shortest path from wd to w (∞ if no
such path exists).

The bound of a world w is b(w) = k − d(w).

Z2

Z1

Z0

wd :p

w1:p w2:p

w3:q w4:q

w ′d Minimal 2-contraction

w ′1

w ′3

d b (k=2)

0

1

2

2

1

0

Figure: Depth (d) and bound (b) of worlds of model M for k = 2.
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Redirecting Edges

Example
wd :p

w1:q
w2:r

w3:r w4:p

wd :p

w1:q w2:r

Figure: Two pointed models: N1 (left) and N2 (right).

Let k = 2. We have the following:

N1 -2 N2

N1 is not a world-minimal model 2-bisimilar to N1

N2 is world minimal, since any model 2-bisimilar to N1 must have at least three worlds
(one for each atomic proposition)
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Redirecting Edges

Example
wd :p

w1:q
w2:r

w3:r w4:p

wd :p

w1:q w2:r

Figure: Two pointed models: N1 (left) and N2 (right).

N2 is obtained from N1 by redirecting all incoming edges of w3 to w2 and deleting the worlds
that are no longer reachable from the designated world.

Idea

­ World w2 can be considered as a representative of w3.

This is possible because the following two conditions hold:

w2 -b(w3) w3, namely w2 -0 w3

b(w2) > b(w3)
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Redirecting Edges

Example
wd :p

w1:q
w2:r

w3:r w4:p

wd :p

w1:q w2:r

Figure: Two pointed models: N1 (left) and N2 (right).

Lemma

Let k > 0, let (M,wd) be a pointed model, with M = (W ,R,V ), and let x ∈W and
y ∈W \ {wd } be two distinct worlds such that:

b(x) > b(y) > 0 and

x -b(y) y.

Let (M ′,wd) be the pointed model obtained by deleting y from (M,wd) and redirecting its
incoming edges to x. Then, (M,wd) -k (M ′,wd).
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Maximal Representatives

Definition (Representatives)

Let x , y be two worlds with non-negative bound.

We say that x represents y , denoted by x � y , iff b(x) > b(y) and x -b(y) y

If furthermore b(x) > b(y), we say that x strictly represents y , denoted by x � y

Definition (Maximal Representatives)

The set of maximal representatives of W is the set of worlds

Wmax = {x ∈W | b(x) > 0 and ¬∃y ∈W (y � x)}

wd :p

w1:p w2:p

w3:q w4:q

Let k = 1. We now calculate Wmax:

wd ∈Wmax

w1,w2 /∈Wmax, since wd � w1,w2

w3,w4 /∈Wmax, since b(w1), b(w2) < 0

Thus: Wmax = {wd }.
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Rooted k-Contractions

It is not hard to show that if w , v ∈Wmax and w -b(w) v then b(w) = b(v).

Definition (Representative Class)

The representative class of a world w is the class [w ]b(w), which we denote with the
compact notation JwK.

Definition (Rooted k-Contraction)

Let M = ((W ,R,V ),wd) and let k > 0. The rooted k-contraction of M is the pointed
model TMUk = ((W ′,R ′,V ′), JwdK), where:

W ′ = {JxK | x ∈Wmax}

R ′i = {(JxK, JyK) | x , y ∈Wmax,∃z(xRiz and y -b(x)−1 z) and b(x) > 0}

V ′(p) = {JxK ∈W ′ | x ∈ V (p)}

Accessibility relations:

We “redirect” xRiz to JxKR ′i JyK
If b(x) = 0, then JxK only needs to preserve 0-bisimilarity
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Example

Recall. . .

The rooted k-contraction of M is the pointed model TMUk = ((W ′,R ′,V ′), JwdK), where:
W ′ = {JxK | x ∈Wmax}

R ′i = {(JxK, JyK) | x , y ∈Wmax,∃z(xRiz and y -b(x)−1 z) and b(x) > 0}
V ′(p) = {JxK ∈W ′ | x ∈ V (p)}

wd :p

w1:p w2:p

w3:q w4:q

[wd ]2:p

[w1]1:p [w2]1:p

[w3]0:q

[wd ]1:p

Let k = 2:
Wmax = W
JwdK 6= Jw1K 6= Jw2K
Jw3K = Jw4K

Let k = 1:
Wmax = {wd }

JwdKR ′JwdK since wdRw1

and wd -0 w1
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Correctness

Theorem

Let M be a pointed model and let k > 0. Then, M -k TMUk .

Proof idea.

We show that Zk , . . . ,Z0 is a k-bisimulation between M and TMUk , where for all 0 6 h 6 k:

Zh = {(x , Jx ′K) | x ′ ∈Wmax, x ′ -h x and b(x) > h}.
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World Minimality

Theorem (World Minimality)

Given a pointed model M and k > 0, TMUk is a world-minimal model k-bisimilar to M.

Proof sketch.

Let JxK 6= JyK be two worlds of TMUk such that b(JxK) = b(JyK) = h:

We show that JxK 6-h JyK
We then can prove that each set Wh of worlds of TMUk having bound h is minimal

If all such sets Wh are minimal, then TMUk is world minimal
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MINIMAL K -CONTRACTIONS
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We Still Don’t Have Edge Minimality

Example

wd :p

w1:p w2:p

w3:q w4:q

[wd ]3:p

[w1]2:p [w2]2:p

[w3]1:q [w4]1:q

Figure: Pointed models M (left) and TMU3 (right).

Let k = 3. We have Wmax = W and b(w3) = 1:

From w3Rw1 and w3Rw2 we have Jw3KR ′Jw1K and Jw3KR ′Jw2K
Since b(w3) = 1 and thus Jw3K only needs to preserve 1-bisimilarity to w3

→ Including only one of those edges in R ′ is sufficient to guarantee 3-bisimilarity to M
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Minimal k-Contractions

Definition

Let < be a total order on W and let 0 6 h 6 k . The least h-representative of w ∈W is the
world minh(w) = min<{v ∈Wmax | v -h w }.

Definition (Rooted k-Contractions)

Let M = ((W ,R,V ),wd), let k > 0 and let < be a total order on W . The rooted
k-contraction of M wrt. < is the pointed model TMU<

k = ((W ′,R ′,V ′), JwdK), where:

W ′ = {JxK | x ∈Wmax};

R ′i = {(JxK, Jminb(x)−1(y)K) | x ∈Wmax, xRiy and b(x) > 0};

V ′(p) = {JxK | x ∈Wmax and x ∈ V (p)}.

Theorem (Correctness and Minimality)

For any M and k > 0, TMU<
k is a minimal pointed model k-bisimilar to M.
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EXPONENTIAL SUCCINCTNESS
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Exponential Succinctness

Theorem (Exponential succinctness)

There exist models Mk , k > 0, for which the rooted k-contraction has Θ(k) worlds whereas
the standard k-contraction has Θ(2k) worlds.

Let k = 3. We build Mk as follows:

ε:p0

l :p1

ll :p2

lll :p3 llr :p3

lr :p2

lrl :p3 lrr :p3

r :p1

rl :p2

rll :p3 rlr :p3

rr :p2

rrl :p3 rrr :p3

JεK:p0

JlK:p1

JllK:p2

JlllK:p3

In bMck , we have x 6= y implies [x ]k 6= [y ]k . Thus |W | = 2k+1

In TMU<
k , we have b(x) = b(y) implies JxK = JyK. Thus |W | = k + 1
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Conclusions and Future Works

Rooted k-contractions improve standard k-contractions:

Provide minimal models

Can be exponentially more succinct

Current and future works:

Canonical k-contractions: provide a unique minimal k-contracted model

Multi-pointed models

Apply rooted k-contractions to epistemic planning

Connection with knowledge/modal structures (by R. Fagin, J. Halpern and M. Vardi)
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THANK YOU
Questions?
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